Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Splines on Cayley Graphs of the Symmetric Group (2401.14380v1)

Published 25 Jan 2024 in math.CO

Abstract: A spline is an assignment of polynomials to the vertices of a graph whose edges are labeled by ideals, where the difference of two polynomials labeling adjacent vertices must belong to the corresponding ideal. The set of splines forms a ring. We consider spline rings where the underlying graph is the Cayley graph of a symmetric group generated by a collection of transpositions. These rings generalize the GKM construction for equivariant cohomology rings of flag, regular semisimple Hessenberg, and permutohedral varieties. These cohomology rings carry two actions of the symmetric group $S_n$ whose graded characters are both of general interest in algebraic combinatorics. In this paper, we generalize the graded $S_n$-representations from the cohomologies of the above varieties to splines on Cayley graphs of $S_n$, then (1) give explicit module and ring generators for whenever the $S_n$-generating set is minimal, (2) give a combinatorial characterization of when graded pieces of one $S_n$-representation is trivial, and (3) compute the first degree piece of both graded characters for all generating sets.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.