Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
86 tokens/sec
Gemini 2.5 Pro Premium
43 tokens/sec
GPT-5 Medium
19 tokens/sec
GPT-5 High Premium
30 tokens/sec
GPT-4o
93 tokens/sec
DeepSeek R1 via Azure Premium
88 tokens/sec
GPT OSS 120B via Groq Premium
441 tokens/sec
Kimi K2 via Groq Premium
234 tokens/sec
2000 character limit reached

Evaluation of depth perception in crowded volumes (2401.13341v1)

Published 24 Jan 2024 in cs.GR

Abstract: Depth perception in volumetric visualization plays a crucial role in the understanding and interpretation of volumetric data. Numerous visualization techniques, many of which rely on physically based optical effects, promise to improve depth perception but often do so without considering camera movement or the content of the volume. As a result, the findings from previous studies may not be directly applicable to crowded volumes, where a large number of contained structures disrupts spatial perception. Crowded volumes therefore require special analysis and visualization tools with sparsification capabilities. Interactivity is an integral part of visualizing and exploring crowded spaces, but has received little attention in previous studies. To address this gap, we conducted a study to assess the impact of different rendering techniques on depth perception in crowded volumes, with a particular focus on the effects of camera movement. The results show that depth perception considering camera motion depends much more on the content of the volume than on the chosen visualization technique. Furthermore, we found that traditional rendering techniques, which have often performed poorly in previous studies, showed comparable performance to physically based methods in our study.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. Collaborative web-based merged volumetric and mesh rendering framework. pages 36–42. Springer International Publishing, 2019. doi:10.1007/978-3-030-25965-5_4.
  2. A perceptive evaluation of volume rendering techniques. ACM Transactions on Applied Perception, 5:1–24, 1 2009. doi:10.1145/1462048.1462054.
  3. Enhancing depth-perception with flexible volumetric halos. IEEE Transactions on Visualization and Computer Graphics, 13:1344–1351, 11 2007. doi:10.1109/TVCG.2007.70555.
  4. Instant volume visualization using maximum intensity difference accumulation. Computer Graphics Forum, 28:775–782, 6 2009. doi:10.1111/j.1467-8659.2009.01474.x.
  5. Perception-based transparency optimization for direct volume rendering. IEEE Transactions on Visualization and Computer Graphics, 15:1283–1290, 11 2009. URL: http://ieeexplore.ieee.org/document/5290740/, doi:10.1109/TVCG.2009.172.
  6. Visibility histograms and visibility-driven transfer functions. IEEE Transactions on Visualization and Computer Graphics, 17:192–204, 2 2011. URL: http://ieeexplore.ieee.org/document/5416704/, doi:10.1109/TVCG.2010.35.
  7. Designing for depth perceptions in augmented reality. pages 111–122. IEEE, 10 2017. doi:10.1109/ISMAR.2017.28.
  8. Interaction driven enhancement of depth perception in angiographic volumes. IEEE Transactions on Visualization and Computer Graphics, 26:2247–2257, 6 2020. doi:10.1109/TVCG.2018.2884940.
  9. An experimental study on the effects of shading in 3d perception of volumetric models. The Visual Computer, 33:47–61, 1 2017. doi:10.1007/s00371-015-1151-6.
  10. Depth-enhanced maximum intensity projection. The Eurographics Association, 2010. doi:10.2312/VG/VG10/093-100.
  11. A crowdsourcing system for integrated and reproducible evaluation in scientific visualization. pages 40–47. IEEE, 4 2016. doi:10.1109/PACIFICVIS.2016.7465249.
  12. Evaluating the perception of semi-transparent structures in direct volume rendering techniques. pages 1–8. ACM, 11 2016. doi:10.1145/3002151.3002164.
  13. Quantitative and qualitative analysis of the perception of semi-transparent structures in direct volume rendering. Computer Graphics Forum, 37:174–187, 9 2018. URL: http://doi.wiley.com/10.1111/cgf.13320, doi:10.1111/cgf.13320.
  14. Evaluation of depth of field for depth perception in dvr. pages 81–88. IEEE, 2 2013. doi:10.1109/PacificVis.2013.6596131.
  15. Depth perception in projective augmented reality: An evaluation of advanced visualization techniques. pages 1–11. ACM, 11 2019. doi:10.1145/3359996.3364245.
  16. Ian P. Howard. Depth Perception. Wiley, 2 2002. doi:10.1002/0471214426.pas0103.
  17. Spatial perception in immersive visualization: A study and findings. pages 369–372. IEEE, 10 2022. doi:10.1109/ISMAR-Adjunct57072.2022.00080.
  18. A survey of volumetric illumination techniques for interactive volume rendering. Computer Graphics Forum, 33:27–51, 2 2014. URL: http://doi.wiley.com/10.1111/cgf.12252, doi:10.1111/cgf.12252.
  19. Spherical fibonacci mapping. ACM Transactions on Graphics, 34:1–7, 11 2015. doi:10.1145/2816795.2818131.
  20. Enhancing depth perception in translucent volumes. IEEE Transactions on Visualization and Computer Graphics, 12:1117–1124, 9 2006. doi:10.1109/TVCG.2006.139.
  21. An evaluation of depth enhancing perceptual cues for vascular volume visualization in neurosurgery. IEEE Transactions on Visualization and Computer Graphics, 20:391–403, 3 2014. doi:10.1109/TVCG.2013.240.
  22. Interactive translucent volume rendering and procedural modeling. pages 109–116. IEEE, 2002. doi:10.1109/VISUAL.2002.1183764.
  23. Flux-limited diffusion for multiple scattering in participating media. Computer Graphics Forum, 33:178–189, 9 2014. URL: http://doi.wiley.com/10.1111/cgf.12342, doi:10.1111/cgf.12342.
  24. Void space surfaces to convey depth in vessel visualizations. IEEE Transactions on Visualization and Computer Graphics, 27:3913–3925, 10 2021. doi:10.1109/TVCG.2020.2993992.
  25. Exposure render: An interactive photo-realistic volume rendering framework. PLoS ONE, 7:e38586, 7 2012. URL: https://dx.plos.org/10.1371/journal.pone.0038586, doi:10.1371/journal.pone.0038586.
  26. Efficient visibility encoding for dynamic illumination in direct volume rendering. IEEE Transactions on Visualization and Computer Graphics, 18:447–462, 3 2012. doi:10.1109/TVCG.2011.35.
  27. Rendering participating media with bidirectional path tracing. pages 91–100, 1996. URL: http://link.springer.com/10.1007/978-3-7091-7484-5_10, doi:10.1007/978-3-7091-7484-5_10.
  28. Depth discrimination from shading under diffuse lighting. Perception, 29:649–660, 2000. doi:10.1068/p3060.
  29. Žiga Lesar. Data from: Evaluation of depth perception in crowded volumes, January 2024. doi:10.5281/zenodo.10555909.
  30. Marc Levoy. Display of surfaces from volume data. IEEE Computer Graphics and Applications, 8:22–37, 1988. doi:10.1109/38.511.
  31. About the influence of illumination models on image comprehension in direct volume rendering. IEEE Transactions on Visualization and Computer Graphics, 17:1922–1931, 12 2011. URL: http://ieeexplore.ieee.org/document/6064955/, doi:10.1109/TVCG.2011.161.
  32. Illumination, shading and the perception of local orientation. Vision Research, 36:2351–2367, 8 1996. URL: https://linkinghub.elsevier.com/retrieve/pii/0042698995002863, doi:10.1016/0042-6989(95)00286-3.
  33. Nelson Max. Optical models for direct volume rendering. IEEE Transactions on Visualization and Computer Graphics, 1:99–108, 6 1995. URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=468400, doi:10.1109/2945.468400.
  34. Practical physically-based shading in film and game production. pages 1–7. ACM, 8 2012. doi:10.1145/2343483.2343493.
  35. Visibility equalizer cutaway visualization of mesoscopic biological models. Computer Graphics Forum, 35:161–170, 6 2016. URL: http://doi.wiley.com/10.1111/cgf.12892, doi:10.1111/cgf.12892.
  36. A survey of perceptually motivated 3d visualization of medical image data. Computer Graphics Forum, 35:501–525, 6 2016. URL: http://doi.wiley.com/10.1111/cgf.12927, doi:10.1111/cgf.12927.
  37. Interactive volumetric lighting simulating scattering and shadowing. pages 169–176. IEEE, 3 2010. doi:10.1109/PACIFICVIS.2010.5429594.
  38. Visually Supporting Depth Perception in Angiography Imaging, pages 93–104. 2006. doi:10.1007/11795018_9.
  39. A directional occlusion shading model for interactive direct volume rendering. Computer Graphics Forum, 28:855–862, 6 2009. URL: http://doi.wiley.com/10.1111/j.1467-8659.2009.01464.x, doi:10.1111/j.1467-8659.2009.01464.x.
  40. Golden ratio sequences for low-discrepancy sampling. Journal of Graphics Tools, 16:95–104, 6 2012. URL: http://www.tandfonline.com/doi/abs/10.1080/2165347X.2012.679555, doi:10.1080/2165347X.2012.679555.
  41. The effect of interactive cues on the perception of angiographic volumes in virtual reality. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 10:357–365, 7 2022. doi:10.1080/21681163.2021.1999332.
  42. Dominique Toublanc. Henyey–greenstein and mie phase functions in monte carlo radiative transfer computations. Applied Optics, 35:3270, 6 1996. URL: https://opg.optica.org/abstract.cfm?URI=ao-35-18-3270, doi:10.1364/AO.35.003270.
  43. Smart visibility in visualization. pages 209–216. The Eurographics Association, 2005. doi:10.2312/COMPAESTH/COMPAESTH05/209-216.
  44. Leonard Wanger. The effect of shadow quality on the perception of spatial relationships in computer generated imagery. pages 39–42. ACM Press, 1992. doi:10.1145/147156.147161.
  45. Perception-driven accelerated rendering. Computer Graphics Forum, 36:611–643, 5 2017. URL: http://doi.wiley.com/10.1111/cgf.13150, doi:10.1111/cgf.13150.
  46. Fiberscout: An interactive tool for exploring and analyzing fiber reinforced polymers. pages 153–160. IEEE, 3 2014. URL: http://ieeexplore.ieee.org/document/6787162/, doi:10.1109/PacificVis.2014.52.
  47. Mark Wexler and Jeroen J.A. van Boxtel. Depth perception by the active observer. Trends in Cognitive Sciences, 9:431–438, 9 2005. URL: https://linkinghub.elsevier.com/retrieve/pii/S1364661305002159, doi:10.1016/j.tics.2005.06.018.
  48. Combined volume and surface rendering with global illumination caching. The Visual Computer, 6 2023. doi:10.1007/s00371-023-02932-9.
  49. Automatic segmentation and reconstruction of intracellular compartments in volumetric electron microscopy data. Computer Methods and Programs in Biomedicine, 223, 8 2022. doi:10.1016/j.cmpb.2022.106959.
  50. Automatic segmentation of mitochondria and endolysosomes in volumetric electron microscopy data. Computers in Biology and Medicine, page 103693, 3 2020. URL: https://linkinghub.elsevier.com/retrieve/pii/S0010482520300792, doi:10.1016/j.compbiomed.2020.103693.
  51. Volume conductor: interactive visibility management for crowded volumes. The Visual Computer, 3 2023. doi:10.1007/s00371-023-02828-8.
  52. Evaluation of angiogram visualization methods for fast and reliable aneurysm diagnosis. volume 9416, page 94161D, 3 2015. URL: http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2082179, doi:10.1117/12.2082179.
  53. Real-time interactive platform-agnostic volumetric path tracing in webgl 2.0. pages 1–7. ACM Press, 2018. URL: http://dl.acm.org/citation.cfm?doid=3208806.3208814, doi:10.1145/3208806.3208814.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets