Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

One at a Time: Progressive Multi-step Volumetric Probability Learning for Reliable 3D Scene Perception (2306.12681v4)

Published 22 Jun 2023 in cs.CV

Abstract: Numerous studies have investigated the pivotal role of reliable 3D volume representation in scene perception tasks, such as multi-view stereo (MVS) and semantic scene completion (SSC). They typically construct 3D probability volumes directly with geometric correspondence, attempting to fully address the scene perception tasks in a single forward pass. However, such a single-step solution makes it hard to learn accurate and convincing volumetric probability, especially in challenging regions like unexpected occlusions and complicated light reflections. Therefore, this paper proposes to decompose the complicated 3D volume representation learning into a sequence of generative steps to facilitate fine and reliable scene perception. Considering the recent advances achieved by strong generative diffusion models, we introduce a multi-step learning framework, dubbed as VPD, dedicated to progressively refining the Volumetric Probability in a Diffusion process. Extensive experiments are conducted on scene perception tasks including multi-view stereo (MVS) and semantic scene completion (SSC), to validate the efficacy of our method in learning reliable volumetric representations. Notably, for the SSC task, our work stands out as the first to surpass LiDAR-based methods on the SemanticKITTI dataset.

Citations (2)

Summary

We haven't generated a summary for this paper yet.