On the average stopping time of the Collatz map in $\mathbb{F}_2[x]$ (2401.12781v1)
Abstract: Define the map $T_1$ on $\mathbb{F}2[x]$ by $T_1(f)=\frac{f}{x}$ if $f(0)=0$ and $T_1(f)=\frac{(x+1)f+1}{x}$ if $f(0)=1$. For a non-zero polynomial $f$ let $\tau_1(f)$ denote the least natural $k$ number for which $T_1{k}(f)=1$. Define the average stopping time to be $\rho_1(n)=\frac{\sum{f\in \mathbb{F}_2[x], \text{deg}(f)=n }\tau_1(f)}{2n}$. We show that $\frac{\rho_1(n)}{n}$ converges to $2$ as $n\rightarrow\infty$ confirming a conjecture of Alon, Behajaina and Paran. Furthermore, we give a new proof that $\tau_1(f)\in O(\text{deg}(f){1.5})$ for all $f\in\mathbb{F}_2[x]\setminus{0}$.
- On the stopping time of the collatz map in š½2ā¢[x]subscriptš½2delimited-[]š„\mathbb{F}_{2}[x]blackboard_F start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT [ italic_x ], 2024.
- A polynomial analogue of the 3n + 1 problem. The American Mathematical Monthly, 115(7):615ā622, 2008.
- Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association, 58(301):13ā30, 1963.
- JeffreyĀ C. Lagarias. The 3x+1 problem: An overview, 2021.
- Terence Tao. Almost all orbits of the collatz map attain almost bounded values. Forum of Mathematics, Pi, 10:e12, 2022.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.