Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Bulk-boundary correspondence in extended trimer Su-Schrieffer-Heeger model (2401.11695v2)

Published 22 Jan 2024 in cond-mat.mes-hall

Abstract: We consider an extended trimer Su-Schrieffer-Heeger (SSH) tight-binding Hamiltonian keeping up to next-nearest-neighbor (NNN) hopping terms and on-site potential energy. The Bloch Hamiltonian can be expressed in terms of all the eight generators (i.e. Gell-Mann matrices) of the SU(3) group. We provide exact analytical expressions of three dispersive energy bands and the corresponding eigenstates for any choices of the system parameters. The system lacks full chiral symmetry since the energy spectrum is not symmetric around zero, except at isolated Bloch wavevectors. We explore parity, time reversal, and certain special chiral symmetries for various system parameters. We discuss the bulk-boundary correspondence by numerically computing the Zak phase for all the bands and the boundary modes in the open boundary condition. There are three different kinds of topological phase transitions, which are classified based on the gap closing points in the Brillouin zone (BZ) while tuning the nearest-neighbor (NN) and NNN hopping terms. We find that quantized changes (in units of $\pi$) in two out of three Zak phases characterize these topological phase transitions. We propose another bulk topological invariant, namely the {\it sub-lattice winding number}, which also characterizes the topological phase transitions changing from $ \nu{\alpha} = 0 \leftrightarrow 2 $ and $ \nu{\alpha} = 0 \leftrightarrow 1 \leftrightarrow 2 $ ($\alpha $: sub-lattice index). The sub-lattice winding number not only provides a relatively simple analytical understanding of topological phases but also successfully establishes bulk-boundary correspondence in the absence of inversion symmetry, which may help in characterizing the bulk-boundary correspondence of systems without chiral and inversion symmetry.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube