Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

VQC-Based Reinforcement Learning with Data Re-uploading: Performance and Trainability (2401.11555v2)

Published 21 Jan 2024 in quant-ph and cs.LG

Abstract: Reinforcement Learning (RL) consists of designing agents that make intelligent decisions without human supervision. When used alongside function approximators such as Neural Networks (NNs), RL is capable of solving extremely complex problems. Deep Q-Learning, a RL algorithm that uses Deep NNs, achieved super-human performance in some specific tasks. Nonetheless, it is also possible to use Variational Quantum Circuits (VQCs) as function approximators in RL algorithms. This work empirically studies the performance and trainability of such VQC-based Deep Q-Learning models in classic control benchmark environments. More specifically, we research how data re-uploading affects both these metrics. We show that the magnitude and the variance of the gradients of these models remain substantial throughout training due to the moving targets of Deep Q-Learning. Moreover, we empirically show that increasing the number of qubits does not lead to an exponential vanishing behavior of the magnitude and variance of the gradients for a PQC approximating a 2-design, unlike what was expected due to the Barren Plateau Phenomenon. This hints at the possibility of VQCs being specially adequate for being used as function approximators in such a context.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. Preskill, J.: Quantum computing in the nisq era and beyond. Quantum 2, 79 (2018) Cerezo et al. [2021] Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S.C., Endo, S., Fujii, K., McClean, J.R., Mitarai, K., Yuan, X., Cincio, L., et al.: Variational quantum algorithms. Nature Reviews Physics 3(9), 625–644 (2021) Ostaszewski et al. [2021] Ostaszewski, M., Grant, E., Benedetti, M.: Structure optimization for parameterized quantum circuits. Quantum 5, 391 (2021) Mitarai et al. [2018] Mitarai, K., Negoro, M., Kitagawa, M., Fujii, K.: Quantum circuit learning. Physical Review A 98(3), 032309 (2018) Schuld and Killoran [2019] Schuld, M., Killoran, N.: Quantum machine learning in feature hilbert spaces. Physical review letters 122(4), 040504 (2019) Schuld et al. [2020] Schuld, M., Bocharov, A., Svore, K.M., Wiebe, N.: Circuit-centric quantum classifiers. Physical Review A 101(3), 032308 (2020) Farhi and Neven [2018] Farhi, E., Neven, H.: Classification with quantum neural networks on near term processors. arXiv preprint arXiv:1802.06002 (2018) Coyle et al. [2020] Coyle, B., Mills, D., Danos, V., Kashefi, E.: The born supremacy: quantum advantage and training of an ising born machine. npj Quantum Information 6(1), 60 (2020) Zoufal et al. [2021] Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15 (2021) Sutton and Barto [2018] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S.C., Endo, S., Fujii, K., McClean, J.R., Mitarai, K., Yuan, X., Cincio, L., et al.: Variational quantum algorithms. Nature Reviews Physics 3(9), 625–644 (2021) Ostaszewski et al. [2021] Ostaszewski, M., Grant, E., Benedetti, M.: Structure optimization for parameterized quantum circuits. Quantum 5, 391 (2021) Mitarai et al. [2018] Mitarai, K., Negoro, M., Kitagawa, M., Fujii, K.: Quantum circuit learning. Physical Review A 98(3), 032309 (2018) Schuld and Killoran [2019] Schuld, M., Killoran, N.: Quantum machine learning in feature hilbert spaces. Physical review letters 122(4), 040504 (2019) Schuld et al. [2020] Schuld, M., Bocharov, A., Svore, K.M., Wiebe, N.: Circuit-centric quantum classifiers. Physical Review A 101(3), 032308 (2020) Farhi and Neven [2018] Farhi, E., Neven, H.: Classification with quantum neural networks on near term processors. arXiv preprint arXiv:1802.06002 (2018) Coyle et al. [2020] Coyle, B., Mills, D., Danos, V., Kashefi, E.: The born supremacy: quantum advantage and training of an ising born machine. npj Quantum Information 6(1), 60 (2020) Zoufal et al. [2021] Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15 (2021) Sutton and Barto [2018] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Ostaszewski, M., Grant, E., Benedetti, M.: Structure optimization for parameterized quantum circuits. Quantum 5, 391 (2021) Mitarai et al. [2018] Mitarai, K., Negoro, M., Kitagawa, M., Fujii, K.: Quantum circuit learning. Physical Review A 98(3), 032309 (2018) Schuld and Killoran [2019] Schuld, M., Killoran, N.: Quantum machine learning in feature hilbert spaces. Physical review letters 122(4), 040504 (2019) Schuld et al. [2020] Schuld, M., Bocharov, A., Svore, K.M., Wiebe, N.: Circuit-centric quantum classifiers. Physical Review A 101(3), 032308 (2020) Farhi and Neven [2018] Farhi, E., Neven, H.: Classification with quantum neural networks on near term processors. arXiv preprint arXiv:1802.06002 (2018) Coyle et al. [2020] Coyle, B., Mills, D., Danos, V., Kashefi, E.: The born supremacy: quantum advantage and training of an ising born machine. npj Quantum Information 6(1), 60 (2020) Zoufal et al. [2021] Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15 (2021) Sutton and Barto [2018] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Mitarai, K., Negoro, M., Kitagawa, M., Fujii, K.: Quantum circuit learning. Physical Review A 98(3), 032309 (2018) Schuld and Killoran [2019] Schuld, M., Killoran, N.: Quantum machine learning in feature hilbert spaces. Physical review letters 122(4), 040504 (2019) Schuld et al. [2020] Schuld, M., Bocharov, A., Svore, K.M., Wiebe, N.: Circuit-centric quantum classifiers. Physical Review A 101(3), 032308 (2020) Farhi and Neven [2018] Farhi, E., Neven, H.: Classification with quantum neural networks on near term processors. arXiv preprint arXiv:1802.06002 (2018) Coyle et al. [2020] Coyle, B., Mills, D., Danos, V., Kashefi, E.: The born supremacy: quantum advantage and training of an ising born machine. npj Quantum Information 6(1), 60 (2020) Zoufal et al. [2021] Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15 (2021) Sutton and Barto [2018] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Killoran, N.: Quantum machine learning in feature hilbert spaces. Physical review letters 122(4), 040504 (2019) Schuld et al. [2020] Schuld, M., Bocharov, A., Svore, K.M., Wiebe, N.: Circuit-centric quantum classifiers. Physical Review A 101(3), 032308 (2020) Farhi and Neven [2018] Farhi, E., Neven, H.: Classification with quantum neural networks on near term processors. arXiv preprint arXiv:1802.06002 (2018) Coyle et al. [2020] Coyle, B., Mills, D., Danos, V., Kashefi, E.: The born supremacy: quantum advantage and training of an ising born machine. npj Quantum Information 6(1), 60 (2020) Zoufal et al. [2021] Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15 (2021) Sutton and Barto [2018] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Bocharov, A., Svore, K.M., Wiebe, N.: Circuit-centric quantum classifiers. Physical Review A 101(3), 032308 (2020) Farhi and Neven [2018] Farhi, E., Neven, H.: Classification with quantum neural networks on near term processors. arXiv preprint arXiv:1802.06002 (2018) Coyle et al. [2020] Coyle, B., Mills, D., Danos, V., Kashefi, E.: The born supremacy: quantum advantage and training of an ising born machine. npj Quantum Information 6(1), 60 (2020) Zoufal et al. [2021] Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15 (2021) Sutton and Barto [2018] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Farhi, E., Neven, H.: Classification with quantum neural networks on near term processors. arXiv preprint arXiv:1802.06002 (2018) Coyle et al. [2020] Coyle, B., Mills, D., Danos, V., Kashefi, E.: The born supremacy: quantum advantage and training of an ising born machine. npj Quantum Information 6(1), 60 (2020) Zoufal et al. [2021] Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15 (2021) Sutton and Barto [2018] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Coyle, B., Mills, D., Danos, V., Kashefi, E.: The born supremacy: quantum advantage and training of an ising born machine. npj Quantum Information 6(1), 60 (2020) Zoufal et al. [2021] Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15 (2021) Sutton and Barto [2018] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15 (2021) Sutton and Barto [2018] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019)
  2. Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S.C., Endo, S., Fujii, K., McClean, J.R., Mitarai, K., Yuan, X., Cincio, L., et al.: Variational quantum algorithms. Nature Reviews Physics 3(9), 625–644 (2021) Ostaszewski et al. [2021] Ostaszewski, M., Grant, E., Benedetti, M.: Structure optimization for parameterized quantum circuits. Quantum 5, 391 (2021) Mitarai et al. [2018] Mitarai, K., Negoro, M., Kitagawa, M., Fujii, K.: Quantum circuit learning. Physical Review A 98(3), 032309 (2018) Schuld and Killoran [2019] Schuld, M., Killoran, N.: Quantum machine learning in feature hilbert spaces. Physical review letters 122(4), 040504 (2019) Schuld et al. [2020] Schuld, M., Bocharov, A., Svore, K.M., Wiebe, N.: Circuit-centric quantum classifiers. Physical Review A 101(3), 032308 (2020) Farhi and Neven [2018] Farhi, E., Neven, H.: Classification with quantum neural networks on near term processors. arXiv preprint arXiv:1802.06002 (2018) Coyle et al. [2020] Coyle, B., Mills, D., Danos, V., Kashefi, E.: The born supremacy: quantum advantage and training of an ising born machine. npj Quantum Information 6(1), 60 (2020) Zoufal et al. [2021] Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15 (2021) Sutton and Barto [2018] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Ostaszewski, M., Grant, E., Benedetti, M.: Structure optimization for parameterized quantum circuits. Quantum 5, 391 (2021) Mitarai et al. [2018] Mitarai, K., Negoro, M., Kitagawa, M., Fujii, K.: Quantum circuit learning. Physical Review A 98(3), 032309 (2018) Schuld and Killoran [2019] Schuld, M., Killoran, N.: Quantum machine learning in feature hilbert spaces. Physical review letters 122(4), 040504 (2019) Schuld et al. [2020] Schuld, M., Bocharov, A., Svore, K.M., Wiebe, N.: Circuit-centric quantum classifiers. Physical Review A 101(3), 032308 (2020) Farhi and Neven [2018] Farhi, E., Neven, H.: Classification with quantum neural networks on near term processors. arXiv preprint arXiv:1802.06002 (2018) Coyle et al. [2020] Coyle, B., Mills, D., Danos, V., Kashefi, E.: The born supremacy: quantum advantage and training of an ising born machine. npj Quantum Information 6(1), 60 (2020) Zoufal et al. [2021] Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15 (2021) Sutton and Barto [2018] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Mitarai, K., Negoro, M., Kitagawa, M., Fujii, K.: Quantum circuit learning. Physical Review A 98(3), 032309 (2018) Schuld and Killoran [2019] Schuld, M., Killoran, N.: Quantum machine learning in feature hilbert spaces. Physical review letters 122(4), 040504 (2019) Schuld et al. [2020] Schuld, M., Bocharov, A., Svore, K.M., Wiebe, N.: Circuit-centric quantum classifiers. Physical Review A 101(3), 032308 (2020) Farhi and Neven [2018] Farhi, E., Neven, H.: Classification with quantum neural networks on near term processors. arXiv preprint arXiv:1802.06002 (2018) Coyle et al. [2020] Coyle, B., Mills, D., Danos, V., Kashefi, E.: The born supremacy: quantum advantage and training of an ising born machine. npj Quantum Information 6(1), 60 (2020) Zoufal et al. [2021] Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15 (2021) Sutton and Barto [2018] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Killoran, N.: Quantum machine learning in feature hilbert spaces. Physical review letters 122(4), 040504 (2019) Schuld et al. [2020] Schuld, M., Bocharov, A., Svore, K.M., Wiebe, N.: Circuit-centric quantum classifiers. Physical Review A 101(3), 032308 (2020) Farhi and Neven [2018] Farhi, E., Neven, H.: Classification with quantum neural networks on near term processors. arXiv preprint arXiv:1802.06002 (2018) Coyle et al. [2020] Coyle, B., Mills, D., Danos, V., Kashefi, E.: The born supremacy: quantum advantage and training of an ising born machine. npj Quantum Information 6(1), 60 (2020) Zoufal et al. [2021] Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15 (2021) Sutton and Barto [2018] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Bocharov, A., Svore, K.M., Wiebe, N.: Circuit-centric quantum classifiers. Physical Review A 101(3), 032308 (2020) Farhi and Neven [2018] Farhi, E., Neven, H.: Classification with quantum neural networks on near term processors. arXiv preprint arXiv:1802.06002 (2018) Coyle et al. [2020] Coyle, B., Mills, D., Danos, V., Kashefi, E.: The born supremacy: quantum advantage and training of an ising born machine. npj Quantum Information 6(1), 60 (2020) Zoufal et al. [2021] Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15 (2021) Sutton and Barto [2018] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Farhi, E., Neven, H.: Classification with quantum neural networks on near term processors. arXiv preprint arXiv:1802.06002 (2018) Coyle et al. [2020] Coyle, B., Mills, D., Danos, V., Kashefi, E.: The born supremacy: quantum advantage and training of an ising born machine. npj Quantum Information 6(1), 60 (2020) Zoufal et al. [2021] Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15 (2021) Sutton and Barto [2018] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Coyle, B., Mills, D., Danos, V., Kashefi, E.: The born supremacy: quantum advantage and training of an ising born machine. npj Quantum Information 6(1), 60 (2020) Zoufal et al. [2021] Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15 (2021) Sutton and Barto [2018] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15 (2021) Sutton and Barto [2018] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019)
  3. Ostaszewski, M., Grant, E., Benedetti, M.: Structure optimization for parameterized quantum circuits. Quantum 5, 391 (2021) Mitarai et al. [2018] Mitarai, K., Negoro, M., Kitagawa, M., Fujii, K.: Quantum circuit learning. Physical Review A 98(3), 032309 (2018) Schuld and Killoran [2019] Schuld, M., Killoran, N.: Quantum machine learning in feature hilbert spaces. Physical review letters 122(4), 040504 (2019) Schuld et al. [2020] Schuld, M., Bocharov, A., Svore, K.M., Wiebe, N.: Circuit-centric quantum classifiers. Physical Review A 101(3), 032308 (2020) Farhi and Neven [2018] Farhi, E., Neven, H.: Classification with quantum neural networks on near term processors. arXiv preprint arXiv:1802.06002 (2018) Coyle et al. [2020] Coyle, B., Mills, D., Danos, V., Kashefi, E.: The born supremacy: quantum advantage and training of an ising born machine. npj Quantum Information 6(1), 60 (2020) Zoufal et al. [2021] Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15 (2021) Sutton and Barto [2018] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Mitarai, K., Negoro, M., Kitagawa, M., Fujii, K.: Quantum circuit learning. Physical Review A 98(3), 032309 (2018) Schuld and Killoran [2019] Schuld, M., Killoran, N.: Quantum machine learning in feature hilbert spaces. Physical review letters 122(4), 040504 (2019) Schuld et al. [2020] Schuld, M., Bocharov, A., Svore, K.M., Wiebe, N.: Circuit-centric quantum classifiers. Physical Review A 101(3), 032308 (2020) Farhi and Neven [2018] Farhi, E., Neven, H.: Classification with quantum neural networks on near term processors. arXiv preprint arXiv:1802.06002 (2018) Coyle et al. [2020] Coyle, B., Mills, D., Danos, V., Kashefi, E.: The born supremacy: quantum advantage and training of an ising born machine. npj Quantum Information 6(1), 60 (2020) Zoufal et al. [2021] Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15 (2021) Sutton and Barto [2018] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Killoran, N.: Quantum machine learning in feature hilbert spaces. Physical review letters 122(4), 040504 (2019) Schuld et al. [2020] Schuld, M., Bocharov, A., Svore, K.M., Wiebe, N.: Circuit-centric quantum classifiers. Physical Review A 101(3), 032308 (2020) Farhi and Neven [2018] Farhi, E., Neven, H.: Classification with quantum neural networks on near term processors. arXiv preprint arXiv:1802.06002 (2018) Coyle et al. [2020] Coyle, B., Mills, D., Danos, V., Kashefi, E.: The born supremacy: quantum advantage and training of an ising born machine. npj Quantum Information 6(1), 60 (2020) Zoufal et al. [2021] Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15 (2021) Sutton and Barto [2018] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Bocharov, A., Svore, K.M., Wiebe, N.: Circuit-centric quantum classifiers. Physical Review A 101(3), 032308 (2020) Farhi and Neven [2018] Farhi, E., Neven, H.: Classification with quantum neural networks on near term processors. arXiv preprint arXiv:1802.06002 (2018) Coyle et al. [2020] Coyle, B., Mills, D., Danos, V., Kashefi, E.: The born supremacy: quantum advantage and training of an ising born machine. npj Quantum Information 6(1), 60 (2020) Zoufal et al. [2021] Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15 (2021) Sutton and Barto [2018] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Farhi, E., Neven, H.: Classification with quantum neural networks on near term processors. arXiv preprint arXiv:1802.06002 (2018) Coyle et al. [2020] Coyle, B., Mills, D., Danos, V., Kashefi, E.: The born supremacy: quantum advantage and training of an ising born machine. npj Quantum Information 6(1), 60 (2020) Zoufal et al. [2021] Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15 (2021) Sutton and Barto [2018] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Coyle, B., Mills, D., Danos, V., Kashefi, E.: The born supremacy: quantum advantage and training of an ising born machine. npj Quantum Information 6(1), 60 (2020) Zoufal et al. [2021] Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15 (2021) Sutton and Barto [2018] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15 (2021) Sutton and Barto [2018] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019)
  4. Mitarai, K., Negoro, M., Kitagawa, M., Fujii, K.: Quantum circuit learning. Physical Review A 98(3), 032309 (2018) Schuld and Killoran [2019] Schuld, M., Killoran, N.: Quantum machine learning in feature hilbert spaces. Physical review letters 122(4), 040504 (2019) Schuld et al. [2020] Schuld, M., Bocharov, A., Svore, K.M., Wiebe, N.: Circuit-centric quantum classifiers. Physical Review A 101(3), 032308 (2020) Farhi and Neven [2018] Farhi, E., Neven, H.: Classification with quantum neural networks on near term processors. arXiv preprint arXiv:1802.06002 (2018) Coyle et al. [2020] Coyle, B., Mills, D., Danos, V., Kashefi, E.: The born supremacy: quantum advantage and training of an ising born machine. npj Quantum Information 6(1), 60 (2020) Zoufal et al. [2021] Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15 (2021) Sutton and Barto [2018] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Killoran, N.: Quantum machine learning in feature hilbert spaces. Physical review letters 122(4), 040504 (2019) Schuld et al. [2020] Schuld, M., Bocharov, A., Svore, K.M., Wiebe, N.: Circuit-centric quantum classifiers. Physical Review A 101(3), 032308 (2020) Farhi and Neven [2018] Farhi, E., Neven, H.: Classification with quantum neural networks on near term processors. arXiv preprint arXiv:1802.06002 (2018) Coyle et al. [2020] Coyle, B., Mills, D., Danos, V., Kashefi, E.: The born supremacy: quantum advantage and training of an ising born machine. npj Quantum Information 6(1), 60 (2020) Zoufal et al. [2021] Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15 (2021) Sutton and Barto [2018] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Bocharov, A., Svore, K.M., Wiebe, N.: Circuit-centric quantum classifiers. Physical Review A 101(3), 032308 (2020) Farhi and Neven [2018] Farhi, E., Neven, H.: Classification with quantum neural networks on near term processors. arXiv preprint arXiv:1802.06002 (2018) Coyle et al. [2020] Coyle, B., Mills, D., Danos, V., Kashefi, E.: The born supremacy: quantum advantage and training of an ising born machine. npj Quantum Information 6(1), 60 (2020) Zoufal et al. [2021] Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15 (2021) Sutton and Barto [2018] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Farhi, E., Neven, H.: Classification with quantum neural networks on near term processors. arXiv preprint arXiv:1802.06002 (2018) Coyle et al. [2020] Coyle, B., Mills, D., Danos, V., Kashefi, E.: The born supremacy: quantum advantage and training of an ising born machine. npj Quantum Information 6(1), 60 (2020) Zoufal et al. [2021] Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15 (2021) Sutton and Barto [2018] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Coyle, B., Mills, D., Danos, V., Kashefi, E.: The born supremacy: quantum advantage and training of an ising born machine. npj Quantum Information 6(1), 60 (2020) Zoufal et al. [2021] Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15 (2021) Sutton and Barto [2018] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15 (2021) Sutton and Barto [2018] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019)
  5. Schuld, M., Killoran, N.: Quantum machine learning in feature hilbert spaces. Physical review letters 122(4), 040504 (2019) Schuld et al. [2020] Schuld, M., Bocharov, A., Svore, K.M., Wiebe, N.: Circuit-centric quantum classifiers. Physical Review A 101(3), 032308 (2020) Farhi and Neven [2018] Farhi, E., Neven, H.: Classification with quantum neural networks on near term processors. arXiv preprint arXiv:1802.06002 (2018) Coyle et al. [2020] Coyle, B., Mills, D., Danos, V., Kashefi, E.: The born supremacy: quantum advantage and training of an ising born machine. npj Quantum Information 6(1), 60 (2020) Zoufal et al. [2021] Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15 (2021) Sutton and Barto [2018] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Bocharov, A., Svore, K.M., Wiebe, N.: Circuit-centric quantum classifiers. Physical Review A 101(3), 032308 (2020) Farhi and Neven [2018] Farhi, E., Neven, H.: Classification with quantum neural networks on near term processors. arXiv preprint arXiv:1802.06002 (2018) Coyle et al. [2020] Coyle, B., Mills, D., Danos, V., Kashefi, E.: The born supremacy: quantum advantage and training of an ising born machine. npj Quantum Information 6(1), 60 (2020) Zoufal et al. [2021] Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15 (2021) Sutton and Barto [2018] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Farhi, E., Neven, H.: Classification with quantum neural networks on near term processors. arXiv preprint arXiv:1802.06002 (2018) Coyle et al. [2020] Coyle, B., Mills, D., Danos, V., Kashefi, E.: The born supremacy: quantum advantage and training of an ising born machine. npj Quantum Information 6(1), 60 (2020) Zoufal et al. [2021] Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15 (2021) Sutton and Barto [2018] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Coyle, B., Mills, D., Danos, V., Kashefi, E.: The born supremacy: quantum advantage and training of an ising born machine. npj Quantum Information 6(1), 60 (2020) Zoufal et al. [2021] Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15 (2021) Sutton and Barto [2018] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15 (2021) Sutton and Barto [2018] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019)
  6. Schuld, M., Bocharov, A., Svore, K.M., Wiebe, N.: Circuit-centric quantum classifiers. Physical Review A 101(3), 032308 (2020) Farhi and Neven [2018] Farhi, E., Neven, H.: Classification with quantum neural networks on near term processors. arXiv preprint arXiv:1802.06002 (2018) Coyle et al. [2020] Coyle, B., Mills, D., Danos, V., Kashefi, E.: The born supremacy: quantum advantage and training of an ising born machine. npj Quantum Information 6(1), 60 (2020) Zoufal et al. [2021] Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15 (2021) Sutton and Barto [2018] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Farhi, E., Neven, H.: Classification with quantum neural networks on near term processors. arXiv preprint arXiv:1802.06002 (2018) Coyle et al. [2020] Coyle, B., Mills, D., Danos, V., Kashefi, E.: The born supremacy: quantum advantage and training of an ising born machine. npj Quantum Information 6(1), 60 (2020) Zoufal et al. [2021] Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15 (2021) Sutton and Barto [2018] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Coyle, B., Mills, D., Danos, V., Kashefi, E.: The born supremacy: quantum advantage and training of an ising born machine. npj Quantum Information 6(1), 60 (2020) Zoufal et al. [2021] Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15 (2021) Sutton and Barto [2018] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15 (2021) Sutton and Barto [2018] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019)
  7. Farhi, E., Neven, H.: Classification with quantum neural networks on near term processors. arXiv preprint arXiv:1802.06002 (2018) Coyle et al. [2020] Coyle, B., Mills, D., Danos, V., Kashefi, E.: The born supremacy: quantum advantage and training of an ising born machine. npj Quantum Information 6(1), 60 (2020) Zoufal et al. [2021] Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15 (2021) Sutton and Barto [2018] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Coyle, B., Mills, D., Danos, V., Kashefi, E.: The born supremacy: quantum advantage and training of an ising born machine. npj Quantum Information 6(1), 60 (2020) Zoufal et al. [2021] Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15 (2021) Sutton and Barto [2018] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15 (2021) Sutton and Barto [2018] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019)
  8. Coyle, B., Mills, D., Danos, V., Kashefi, E.: The born supremacy: quantum advantage and training of an ising born machine. npj Quantum Information 6(1), 60 (2020) Zoufal et al. [2021] Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15 (2021) Sutton and Barto [2018] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15 (2021) Sutton and Barto [2018] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019)
  9. Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum boltzmann machines. Quantum Machine Intelligence 3, 1–15 (2021) Sutton and Barto [2018] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019)
  10. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ??? (2018) Silver et al. [2021] Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019)
  11. Silver, D., Singh, S., Precup, D., Sutton, R.S.: Reward is enough. Artificial Intelligence 299, 103535 (2021) LeCun et al. [2015] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019)
  12. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444 (2015) Silver et al. [2017] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019)
  13. Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017) Silver et al. [2016] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019)
  14. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. nature 529(7587), 484–489 (2016) Mnih et al. [2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019)
  15. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540), 529–533 (2015) Sallab et al. [2017] Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019)
  16. Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning framework for autonomous driving. arXiv preprint arXiv:1704.02532 (2017) Kober et al. [2013] Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019)
  17. Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. The International Journal of Robotics Research 32(11), 1238–1274 (2013) Hambly et al. [2023] Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019)
  18. Hambly, B., Xu, R., Yang, H.: Recent advances in reinforcement learning in finance. Mathematical Finance 33(3), 437–503 (2023) Chen et al. [2020] Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019)
  19. Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen, P.-Y., Ma, X., Goan, H.-S.: Variational quantum circuits for deep reinforcement learning. IEEE Access 8, 141007–141024 (2020) Lockwood and Si [2020] Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019)
  20. Lockwood, O., Si, M.: Reinforcement learning with quantum variational circuit. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 245–251 (2020) Skolik et al. [2022] Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019)
  21. Skolik, A., Jerbi, S., Dunjko, V.: Quantum agents in the gym: a variational quantum algorithm for deep q-learning. Quantum 6, 720 (2022) Jerbi et al. [2021] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019)
  22. Jerbi, S., Gyurik, C., Marshall, S., Briegel, H.J., Dunjko, V.: Variational quantum policies for reinforcement learning. arXiv preprint arXiv:2103.05577 (2021) Sequeira et al. [2022] Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019)
  23. Sequeira, A., Santos, L.P., Barbosa, L.S.: Variational quantum policy gradients with an application to quantum control. arXiv preprint arXiv:2203.10591 (2022) Schuld et al. [2021] Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019)
  24. Schuld, M., Sweke, R., Meyer, J.J.: Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A 103(3), 032430 (2021) Pérez-Salinas et al. [2020] Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019)
  25. Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., Latorre, J.I.: Data re-uploading for a universal quantum classifier. Quantum 4, 226 (2020) McClean et al. [2018] McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019)
  26. McClean, J.R., Boixo, S., Smelyanskiy, V.N., Babbush, R., Neven, H.: Barren plateaus in quantum neural network training landscapes. Nature communications 9(1), 1–6 (2018) Holmes et al. [2022] Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019)
  27. Holmes, Z., Sharma, K., Cerezo, M., Coles, P.J.: Connecting ansatz expressibility to gradient magnitudes and barren plateaus. PRX Quantum 3(1), 010313 (2022) Kaelbling et al. [1996] Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019)
  28. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996) Watkins and Dayan [1992] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019)
  29. Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992) Andre and Russell [2002] Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019)
  30. Andre, D., Russell, S.J.: State abstraction for programmable reinforcement learning agents. In: Aaai/iaai, pp. 119–125 (2002) Sorzano et al. [2014] Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019)
  31. Sorzano, C.O.S., Vargas, J., Montano, A.P.: A survey of dimensionality reduction techniques. arXiv preprint arXiv:1403.2877 (2014) Busoniu et al. [2017] Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019)
  32. Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming Using Function Approximators. CRC press, ??? (2017) Bilkis et al. [2021] Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019)
  33. Bilkis, M., Cerezo, M., Verdon, G., Coles, P.J., Cincio, L.: A semi-agnostic ansatz with variable structure for quantum machine learning. arXiv preprint arXiv:2103.06712 (2021) Schuld et al. [2019] Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019)
  34. Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., Killoran, N.: Evaluating analytic gradients on quantum hardware. Physical Review A 99(3), 032331 (2019) Jones and Gacon [2020] Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019)
  35. Jones, T., Gacon, J.: Efficient calculation of gradients in classical simulations of variational quantum algorithms. arXiv preprint arXiv:2009.02823 (2020) Cerezo et al. [2021] Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019)
  36. Cerezo, M., Sone, A., Volkoff, T., Cincio, L., Coles, P.J.: Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature communications 12(1), 1791 (2021) Grant et al. [2019] Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019)
  37. Grant, E., Wossnig, L., Ostaszewski, M., Benedetti, M.: An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum 3, 214 (2019) Meyer et al. [2022] Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019)
  38. Meyer, N., Ufrecht, C., Periyasamy, M., Scherer, D.D., Plinge, A., Mutschler, C.: A survey on quantum reinforcement learning. arXiv preprint arXiv:2211.03464 (2022) Sim et al. [2019] Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019) Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019)
  39. Sim, S., Johnson, P.D., Aspuru-Guzik, A.: Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies 2(12), 1900070 (2019)
Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com