Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BCQQ: Batch-Constraint Quantum Q-Learning with Cyclic Data Re-uploading (2305.00905v2)

Published 27 Apr 2023 in quant-ph and cs.LG

Abstract: Deep reinforcement learning (DRL) often requires a large number of data and environment interactions, making the training process time-consuming. This challenge is further exacerbated in the case of batch RL, where the agent is trained solely on a pre-collected dataset without environment interactions. Recent advancements in quantum computing suggest that quantum models might require less data for training compared to classical methods. In this paper, we investigate this potential advantage by proposing a batch RL algorithm that utilizes VQC as function approximators within the discrete batch-constraint deep Q-learning (BCQ) algorithm. Additionally, we introduce a novel data re-uploading scheme by cyclically shifting the order of input variables in the data encoding layers. We evaluate the efficiency of our algorithm on the OpenAI CartPole environment and compare its performance to the classical neural network-based discrete BCQ.

Citations (5)

Summary

We haven't generated a summary for this paper yet.