Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analyzing Brain Activity During Learning Tasks with EEG and Machine Learning (2401.10285v1)

Published 15 Jan 2024 in eess.SP, cs.LG, and q-bio.NC

Abstract: This study aimed to analyze brain activity during various STEM activities, exploring the feasibility of classifying between different tasks. EEG brain data from twenty subjects engaged in five cognitive tasks were collected and segmented into 4-second clips. Power spectral densities of brain frequency waves were then analyzed. Testing different k-intervals with XGBoost, Random Forest, and Bagging Classifier revealed that Random Forest performed best, achieving a testing accuracy of 91.07% at an interval size of two. When utilizing all four EEG channels, cognitive flexibility was most recognizable. Task-specific classification accuracy showed the right frontal lobe excelled in mathematical processing and planning, the left frontal lobe in cognitive flexibility and mental flexibility, and the left temporoparietal lobe in connections. Notably, numerous connections between frontal and temporoparietal lobes were observed during STEM activities. This study contributes to a deeper understanding of implementing machine learning in analyzing brain activity and sheds light on the brain's mechanisms.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com