Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cognitive state classification using transformed fMRI data (1604.05413v1)

Published 19 Apr 2016 in cs.CV

Abstract: One approach, for understanding human brain functioning, is to analyze the changes in the brain while performing cognitive tasks. Towards this, Functional Magnetic Resonance (fMR) images of subjects performing well-defined tasks are widely utilized for task-specific analyses. In this work, we propose a procedure to enable classification between two chosen cognitive tasks, using their respective fMR image sequences. The time series of expert-marked anatomically-mapped relevant voxels are processed and fed as input to the classical Naive Bayesian and SVM classifiers. The processing involves use of random sieve function, phase information in the data transformed using Fourier and Hilbert transformations. This processing results in improved classification, as against using the voxel intensities directly, as illustrated. The novelty of the proposed method lies in utilizing the phase information in the transformed domain, for classifying between the cognitive tasks along with random sieve function chosen with a particular probability distribution. The proposed classification procedure is applied on a publicly available dataset, StarPlus data, with 6 subjects performing the two distinct cognitive tasks of watching either a picture or a sentence. The classification accuracy stands at an average of 65.6%(using Naive Bayes classifier) and 76.4%(using SVM classifier) for raw data. The corresponding classification accuracy stands at 96.8% and 97.5% for Fourier transformed data. For Hilbert transformed data, it is 93.7% and 99%, for 6 subjects, on 2 cognitive tasks.

Citations (9)

Summary

We haven't generated a summary for this paper yet.