Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 29 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Exploiting Hierarchical Interactions for Protein Surface Learning (2401.10144v1)

Published 17 Jan 2024 in q-bio.BM and cs.LG

Abstract: Predicting interactions between proteins is one of the most important yet challenging problems in structural bioinformatics. Intrinsically, potential function sites in protein surfaces are determined by both geometric and chemical features. However, existing works only consider handcrafted or individually learned chemical features from the atom type and extract geometric features independently. Here, we identify two key properties of effective protein surface learning: 1) relationship among atoms: atoms are linked with each other by covalent bonds to form biomolecules instead of appearing alone, leading to the significance of modeling the relationship among atoms in chemical feature learning. 2) hierarchical feature interaction: the neighboring residue effect validates the significance of hierarchical feature interaction among atoms and between surface points and atoms (or residues). In this paper, we present a principled framework based on deep learning techniques, namely Hierarchical Chemical and Geometric Feature Interaction Network (HCGNet), for protein surface analysis by bridging chemical and geometric features with hierarchical interactions. Extensive experiments demonstrate that our method outperforms the prior state-of-the-art method by 2.3% in site prediction task and 3.2% in interaction matching task, respectively. Our code is available at https://github.com/xmed-lab/HCGNet.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. C. Shen, J. Ding, Z. Wang, D. Cao, X. Ding, and T. Hou, “From machine learning to deep learning: Advances in scoring functions for protein–ligand docking,” Wiley Interdisciplinary Reviews: Computational Molecular Science, vol. 10, no. 1, p. e1429, 2020.
  2. Y. Wang and O. Jardetzky, “Investigation of the neighboring residue effects on protein chemical shifts,” Journal of the American Chemical Society, vol. 124, no. 47, pp. 14 075–14 084, 2002.
  3. S. Jones and J. M. Thornton, “Principles of protein-protein interactions,” Proceedings of the National Academy of Sciences, vol. 93, no. 1, pp. 13–20, 1996.
  4. J. Novotny and K. Sharp, “Electrostatic fields in antibodies and antibody/antigen complexes,” Progress in biophysics and molecular biology, vol. 58, no. 3, pp. 203–224, 1992.
  5. V. A. Roberts, H. Freeman, A. Olson, J. Tainer, and E. Getzoff, “Electrostatic orientation of the electron-transfer complex between plastocyanin and cytochrome c,” Journal of Biological Chemistry, vol. 266, no. 20, pp. 13 431–13 441, 1991.
  6. B. C. Braden and R. J. Poljak, “Structural features of the reactions between antibodies and protein antigens,” The FASEB Journal, vol. 9, no. 1, pp. 9–16, 1995.
  7. E. Demchuk, T. Mueller, H. Oschkinat, W. Sebald, and R. C. Wade, “Receptor binding properties of four-helix-bundle growth factors deduced from electrostatic analysis,” Protein Science, vol. 3, no. 6, pp. 920–935, 1994.
  8. I. A. Vakser and C. Aflalo, “Hydrophobic docking: a proposed enhancement to molecular recognition techniques,” Proteins: Structure, Function, and Bioinformatics, vol. 20, no. 4, pp. 320–329, 1994.
  9. B. Lee and F. M. Richards, “The interpretation of protein structures: estimation of static accessibility,” Journal of molecular biology, vol. 55, no. 3, pp. 379–IN4, 1971.
  10. M. C. Lawrence and P. M. Colman, “Shape complementarity at protein/protein interfaces,” 1993.
  11. P. Gainza, F. Sverrisson, F. Monti, E. Rodolà, D. Boscaini, M. Bronstein, and B. Correia, “Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning,” Nature Methods, vol. 17, no. 2, pp. 184–192, 2020.
  12. G. Mai, K. Janowicz, B. Yan, R. Zhu, L. Cai, and N. Lao, “Multi-scale representation learning for spatial feature distributions using grid cells,” 2020.
  13. N. B. Rego, E. Xi, and A. J. Patel, “Identifying hydrophobic protein patches to inform protein interaction interfaces,” Proceedings of the National Academy of Sciences, vol. 118, no. 6, 2021.
  14. F. Sverrisson, J. Feydy, B. E. Correia, and M. M. Bronstein, “Fast end-to-end learning on protein surfaces,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2021.
  15. J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool, R. Bates, A. Žídek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl, A. J. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu, P. Kohli, and D. Hassabis, “Highly accurate protein structure prediction with AlphaFold,” Nature, vol. 596, no. 7873, pp. 583–589, 2021.
  16. A. W. Senior, R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. Green, C. Qin, A. Žídek, A. W. Nelson, A. Bridgland et al., “Protein structure prediction using multiple deep neural networks in the 13th critical assessment of protein structure prediction (casp13),” Proteins: Structure, Function, and Bioinformatics, vol. 87, no. 12, pp. 1141–1148, 2019.
  17. A. W. Senior, R. Evans, Jumper et al., “Improved protein structure prediction using potentials from deep learning,” Nature, vol. 577, no. 7792, pp. 706–710, 2020.
  18. J. Xu, “Distance-based protein folding powered by deep learning,” Proceedings of the National Academy of Sciences, vol. 116, no. 34, pp. 16 856–16 865, 2019.
  19. B. Dai and C. Bailey-Kellogg, “Protein interaction interface region prediction by geometric deep learning,” Bioinformatics, 2021.
  20. A. R. Jamasb, B. Day, C. Cangea, P. Liò, and T. L. Blundell, “Deep learning for protein–protein interaction site prediction,” in Proteomics Data Analysis.   Springer, 2021, pp. 263–288.
  21. V. R. Somnath, C. Bunne, and A. Krause, “Multi-scale representation learning on proteins,” Advances in Neural Information Processing Systems, vol. 34, 2021.
  22. G. Xiong, C. Shen, Z. Yang, D. Jiang, S. Liu, A. Lu, X. Chen, T. Hou, and D. Cao, “Featurization strategies for protein–ligand interactions and their applications in scoring function development,” Wiley Interdisciplinary Reviews: Computational Molecular Science, p. e1567, 2021.
  23. B. G. Pierce, Y. Hourai, and Z. Weng, “Accelerating protein docking in zdock using an advanced 3d convolution library,” PloS one, vol. 6, no. 9, p. e24657, 2011.
  24. N. Renaud, C. Geng, S. Georgievska, F. Ambrosetti, L. Ridder, D. F. Marzella, A. M. Bonvin, and L. C. Xue, “Deeprank: A deep learning framework for data mining 3d protein-protein interfaces,” Biorxiv, 2021.
  25. D. Schneidman-Duhovny, Y. Inbar, R. Nussinov, and H. J. Wolfson, “Patchdock and symmdock: servers for rigid and symmetric docking,” Nucleic acids research, vol. 33, no. suppl_2, pp. W363–W367, 2005.
  26. T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in vector space,” arXiv preprint arXiv:1301.3781, 2013.
  27. Q. Le and T. Mikolov, “Distributed representations of sentences and documents,” in International conference on machine learning.   PMLR, 2014, pp. 1188–1196.
  28. E. C. Alley, G. Khimulya, S. Biswas, M. AlQuraishi, and G. M. Church, “Unified rational protein engineering with sequence-based deep representation learning,” Nature methods, vol. 16, no. 12, pp. 1315–1322, 2019.
  29. B. Krause, L. Lu, I. Murray, and S. Renals, “Multiplicative lstm for sequence modelling,” 2017.
  30. M. Simonovsky and J. Meyers, “Deeplytough: learning structural comparison of protein binding sites,” Journal of chemical information and modeling, vol. 60, no. 4, pp. 2356–2366, 2020.
  31. R. J. L. Townshend, R. Bedi, P. A. Suriana, and R. O. Dror, “End-to-end learning on 3d protein structure for interface prediction,” 2019.
  32. F. A., B. J., S. B., and B.-H. A., “Protein interface prediction using graph convolutional networks,” in Advances in Neural Information Processing System, 2017.
  33. C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets for 3d classification and segmentation,” arXiv preprint arXiv:1612.00593, 2016.
  34. C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical feature learning on point sets in a metric space,” arXiv preprint arXiv:1706.02413, 2017.
  35. Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen, “Pointcnn: Convolution on x-transformed points,” Advances in neural information processing systems, vol. 31, pp. 820–830, 2018.
  36. H. Thomas, C. R. Qi, J.-E. Deschaud, B. Marcotegui, F. Goulette, and L. J. Guibas, “Kpconv: Flexible and deformable convolution for point clouds,” Proceedings of the IEEE International Conference on Computer Vision, 2019.
  37. W. Wu, Z. Qi, and L. Fuxin, “Pointconv: Deep convolutional networks on 3d point clouds,” arXiv preprint arXiv:1811.07246, 2018.
  38. G. Li, M. Muller, A. Thabet, and B. Ghanem, “Deepgcns: Can gcns go as deep as cnns?” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 9267–9276.
  39. Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, “Dynamic graph cnn for learning on point clouds,” ACM Transactions on Graphics (TOG), 2019.
  40. M. Tatarchenko, J. Park, V. Koltun, and Q.-Y. Zhou, “Tangent convolutions for dense prediction in 3d,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 3887–3896.
  41. Y. Lin, Z. Yan, H. Huang, D. Du, L. Liu, S. Cui, and X. Han, “Fpconv: Learning local flattening for point convolution,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 4293–4302.
  42. H. Berman, K. Henrick, and H. Nakamura, “Announcing the worldwide protein data bank,” Nature Structural & Molecular Biology, vol. 10, no. 12, pp. 980–980, 2003.
  43. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
  44. Y. Eldar, M. Lindenbaum, M. Porat, and Y. Y. Zeevi, “The farthest point strategy for progressive image sampling,” IEEE Transactions on Image Processing, vol. 6, no. 9, pp. 1305–1315, 1997.
  45. F. Milletari, N. Navab, and S.-A. Ahmadi, “V-net: Fully convolutional neural networks for volumetric medical image segmentation,” in 2016 fourth international conference on 3D vision (3DV).   IEEE, 2016, pp. 565–571.
  46. A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” in NIPS-W, 2017.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 11 likes.