Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tiny Multi-Agent DRL for Twins Migration in UAV Metaverses: A Multi-Leader Multi-Follower Stackelberg Game Approach (2401.09680v2)

Published 18 Jan 2024 in cs.AI and cs.GT

Abstract: The synergy between Unmanned Aerial Vehicles (UAVs) and metaverses is giving rise to an emerging paradigm named UAV metaverses, which create a unified ecosystem that blends physical and virtual spaces, transforming drone interaction and virtual exploration. UAV Twins (UTs), as the digital twins of UAVs that revolutionize UAV applications by making them more immersive, realistic, and informative, are deployed and updated on ground base stations, e.g., RoadSide Units (RSUs), to offer metaverse services for UAV Metaverse Users (UMUs). Due to the dynamic mobility of UAVs and limited communication coverages of RSUs, it is essential to perform real-time UT migration to ensure seamless immersive experiences for UMUs. However, selecting appropriate RSUs and optimizing the required bandwidth is challenging for achieving reliable and efficient UT migration. To address the challenges, we propose a tiny machine learning-based Stackelberg game framework based on pruning techniques for efficient UT migration in UAV metaverses. Specifically, we formulate a multi-leader multi-follower Stackelberg model considering a new immersion metric of UMUs in the utilities of UAVs. Then, we design a Tiny Multi-Agent Deep Reinforcement Learning (Tiny MADRL) algorithm to obtain the tiny networks representing the optimal game solution. Specifically, the actor-critic network leverages the pruning techniques to reduce the number of network parameters and achieve model size and computation reduction, allowing for efficient implementation of Tiny MADRL. Numerical results demonstrate that our proposed schemes have better performance than traditional schemes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (50)
  1. C. Hu, Q. Qi, L. Zhang, C. Liu, D. Chen, J. Liao, Z. Zhuang, and J. Wang, “Digital twins-based multi-agent deep reinforcement learning for UAV-assisted vehicle edge computing,” in 2022 IEEE Smartworld, Ubiquitous Intelligence & Computing, Scalable Computing & Communications, Digital Twin, Privacy Computing, Metaverse, Autonomous & Trusted Vehicles (SmartWorld/UIC/ScalCom/DigitalTwin/PriComp/Meta).   IEEE, 2022, pp. 1329–1336.
  2. J. Kang, J. Wen, D. Ye, B. Lai, T. Wu, Z. Xiong, J. Nie, D. Niyato, Y. Zhang, and S. Xie, “Blockchain-empowered federated learning for healthcare metaverses: User-centric incentive mechanism with optimal data freshness,” IEEE Transactions on Cognitive Communications and Networking, pp. 1–1, 2023.
  3. X. Luo, J. Wen, J. Kang, J. Nie, Z. Xiong, Y. Zhang, Z. Yang, and S. Xie, “Privacy attacks and defenses for digital twin migrations in vehicular metaverses,” IEEE Network, pp. 1–1, 2023.
  4. J. Wen, J. Kang, Z. Xiong, Y. Zhang, H. Du, Y. Jiao, and D. Niyato, “Task freshness-aware incentive mechanism for vehicle twin migration in vehicular metaverses,” in IEEE International Conference on Metaverse Computing, Networking and Applications (IEEE MetaCom 2023), IEEE.   Los Alamitos, CA, USA: IEEE Computer Society, jun 2023, pp. 481–487.
  5. J. Chen, J. Kang, M. Xu, Z. Xiong, D. Niyato, C. Chen, A. Jamalipour, and S. Xie, “Multi-agent deep reinforcement learning for dynamic avatar migration in AIoT-enabled vehicular metaverses with trajectory prediction,” IEEE Internet of Things Journal, pp. 1–1, 2023.
  6. Y. Wang, W. Chen, T. H. Luan, Z. Su, Q. Xu, R. Li, and N. Chen, “Task offloading for post-disaster rescue in unmanned aerial vehicles networks,” IEEE/ACM Transactions on Networking, vol. 30, no. 4, pp. 1525–1539, 2022.
  7. J. Zhang, J. Nie, J. Wen, J. Kang, M. Xu, X. Luo, and D. Niyato, “Learning-based incentive mechanism for task freshness-aware vehicular twin migration,” in 2023 IEEE 43rd International Conference on Distributed Computing Systems Workshops (ICDCSW).   IEEE, 2023, pp. 103–108.
  8. J. Du, W. Cheng, G. Lu, H. Cao, X. Chu, Z. Zhang, and J. Wang, “Resource pricing and allocation in MEC enabled blockchain systems: An A3C deep reinforcement learning approach,” IEEE Transactions on Network Science and Engineering, vol. 9, no. 1, pp. 33–44, 2021.
  9. J. Wen, J. Kang, M. Xu, H. Du, Z. Xiong, Y. Zhang, and D. Niyato, “Freshness-aware incentive mechanism for mobile AI-Generated Content (AIGC) networks,” in 2023 IEEE/CIC International Conference on Communications in China (ICCC).   IEEE, 2023, pp. 1–6.
  10. S. Disabato and M. Roveri, “Tiny machine learning for concept drift,” IEEE Transactions on Neural Networks and Learning Systems, pp. 1–12, 2022.
  11. D. B. Rawat and H. El Alami, “Metaverse: Requirements, architecture, standards, status, challenges, and perspectives,” IEEE Internet of Things Magazine, vol. 6, no. 1, pp. 14–18, 2023.
  12. L.-H. Lee, T. Braud, P. Zhou, L. Wang, D. Xu, Z. Lin, A. Kumar, C. Bermejo, and P. Hui, “All one needs to know about metaverse: A complete survey on technological singularity, virtual ecosystem, and research agenda,” arXiv preprint arXiv:2110.05352, 2021.
  13. Y. Zhong, J. Wen, J. Zhang, J. Kang, Y. Jiang, Y. Zhang, Y. Cheng, and Y. Tong, “Blockchain-assisted twin migration for vehicular metaverses: A game theory approach,” Transactions on Emerging Telecommunications Technologies, vol. 34, no. 12, p. e4856, 2023.
  14. M. G. Juarez, V. J. Botti, and A. S. Giret, “Digital twins: Review and challenges,” Journal of Computing and Information Science in Engineering, vol. 21, no. 3, p. 030802, 2021.
  15. Y. Jiang, J. Kang, D. Niyato, X. Ge, Z. Xiong, C. Miao, and X. Shen, “Reliable distributed computing for metaverse: A hierarchical game-theoretic approach,” IEEE Transactions on Vehicular Technology, vol. 72, no. 1, pp. 1084–1100, 2023.
  16. M. Xu, D. Niyato, J. Kang, Z. Xiong, C. Miao, and D. I. Kim, “Wireless edge-empowered metaverse: A learning-based incentive mechanism for virtual reality,” in ICC 2022 - IEEE International Conference on Communications, 2022, pp. 5220–5225.
  17. X. Huang, W. Zhong, J. Nie, Q. Hu, Z. Xiong, J. Kang, and T. Q. Quek, “Joint user association and resource pricing for metaverse: Distributed and centralized approaches,” in 2022 IEEE 19th International Conference on Mobile Ad Hoc and Smart Systems (MASS).   IEEE, 2022, pp. 505–513.
  18. X. Huang, Y. Wu, J. Kang, J. Nie, W. Zhong, D. I. Kim, and S. Xie, “Service reservation and pricing for green metaverses: A Stackelberg game approach,” IEEE Wireless Communications, vol. 30, no. 5, pp. 86–94, 2023.
  19. Y. Zhan, S. Guo, P. Li, and J. Zhang, “A deep reinforcement learning based offloading game in edge computing,” IEEE Transactions on Computers, vol. 69, no. 6, pp. 883–893, 2020.
  20. R. Zhang, K. Xiong, W. Guo, X. Yang, P. Fan, and K. B. Letaief, “Q-learning-based adaptive power control in wireless RF energy harvesting heterogeneous networks,” IEEE Systems Journal, vol. 15, no. 2, pp. 1861–1872, 2020.
  21. D. Livne and K. Cohen, “PoPS: Policy pruning and shrinking for deep reinforcement learning,” IEEE Journal of Selected Topics in Signal Processing, vol. 14, no. 4, pp. 789–801, 2020.
  22. W. Su, Z. Li, Z. Yang, and J. Lu, “Deep reinforcement learning with sparse regularized pruning and compressing,” in 2021 China Automation Congress (CAC), 2021, pp. 8041–8046.
  23. Z. Li, W. Su, M. Xu, R. Yu, D. Niyato, and S. Xie, “Compact learning model for dynamic off-chain routing in blockchain-based IoT,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 12, pp. 3615–3630, 2022.
  24. K. Roth, O. Vinyals, and Z. Akata, “Non-isotropy regularization for proxy-based deep metric learning,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 7420–7430.
  25. X. Zhu, Y. Luo, A. Liu, N. N. Xiong, M. Dong, and S. Zhang, “A deep reinforcement learning-based resource management game in vehicular edge computing,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 3, pp. 2422–2433, 2021.
  26. U. G. SEFERCİK, T. KAVZOĞLU, M. NAZAR, C. ATALAY, and M. MADAK, “Creation of a virtual tour. exe utilizing very high-resolution RGB UAV data,” International Journal of Environment and Geoinformatics, vol. 9, no. 4, pp. 151–160, 2022.
  27. Y. Ren, R. Xie, F. R. Yu, T. Huang, and Y. Liu, “Quantum collective learning and many-to-many matching game in the metaverse for connected and autonomous vehicles,” IEEE Transactions on Vehicular Technology, vol. 71, no. 11, pp. 12 128–12 139, 2022.
  28. Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.
  29. R. Ou, G. O. Boateng, D. Ayepah-Mensah, G. Sun, and G. Liu, “Stackelberg game-based dynamic resource trading for network slicing in 5G networks,” Journal of Network and Computer Applications, vol. 214, p. 103600, 2023.
  30. P. Reichl, B. Tuffin, and R. Schatz, “Logarithmic laws in service quality perception: where microeconomics meets psychophysics and quality of experience,” Telecommunication Systems, vol. 52, pp. 587–600, 2013.
  31. H. Du, J. Liu, D. Niyato, J. Kang, Z. Xiong, J. Zhang, and D. I. Kim, “Attention-aware resource allocation and QoE analysis for metaverse xURLLC services,” IEEE Journal on Selected Areas in Communications, vol. 41, no. 7, pp. 2158–2175, 2023.
  32. J. Yu, A. Alhilal, T. Zhou, H. Pan, and D. H. Tsang, “Attention-based QoE-aware digital twin empowered edge computing for immersive virtual reality,” arXiv preprint arXiv:2305.08569, 2023.
  33. Z. Xiong, J. Kang, D. Niyato, P. Wang, and H. V. Poor, “Cloud/edge computing service management in blockchain networks: Multi-leader multi-follower game-based ADMM for pricing,” IEEE Transactions on Services Computing, vol. 13, no. 2, pp. 356–367, 2019.
  34. T. Lyu, H. Xu, and Z. Han, “Multi-leader multi-follower Stackelberg game based resource allocation in multi-access edge computing,” in ICC 2022 - IEEE International Conference on Communications, 2022, pp. 4306–4311.
  35. Y. Zhan, C. H. Liu, Y. Zhao, J. Zhang, and J. Tang, “Free market of multi-leader multi-follower mobile crowdsensing: An incentive mechanism design by deep reinforcement learning,” IEEE Transactions on Mobile Computing, vol. 19, no. 10, pp. 2316–2329, 2020.
  36. Y. Yu, D. Chen, X. Tang, T. Song, C. S. Hong, and Z. Han, “Incentive framework for cross-device federated learning and analytics with multiple tasks based on a multi-leader-follower game,” IEEE Transactions on Network Science and Engineering, vol. 9, no. 5, pp. 3749–3761, 2022.
  37. Y. Zhan, P. Li, Z. Qu, D. Zeng, and S. Guo, “A learning-based incentive mechanism for federated learning,” IEEE Internet of Things Journal, vol. 7, no. 7, pp. 6360–6368, 2020.
  38. X. Huang, P. Li, R. Yu, Y. Wu, K. Xie, and S. Xie, “Fedparking: A federated learning based parking space estimation with parked vehicle assisted edge computing,” IEEE Transactions on Vehicular Technology, vol. 70, no. 9, pp. 9355–9368, 2021.
  39. Z. Ning, S. Sun, X. Wang, L. Guo, S. Guo, X. Hu, B. Hu, and R. Y. K. Kwok, “Blockchain-enabled intelligent transportation systems: A distributed crowdsensing framework,” IEEE Transactions on Mobile Computing, vol. 21, no. 12, pp. 4201–4217, 2022.
  40. Z. Ning, K. Zhang, X. Wang, M. S. Obaidat, L. Guo, X. Hu, B. Hu, Y. Guo, B. Sadoun, and R. Y. K. Kwok, “Joint computing and caching in 5G-envisioned Internet of vehicles: A deep reinforcement learning-based traffic control system,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 8, pp. 5201–5212, 2021.
  41. J. Du, Z. Kong, A. Sun, J. Kang, D. Niyato, X. Chu, and F. R. Yu, “Maddpg-based joint service placement and task offloading in MEC empowered air-ground integrated networks,” IEEE Internet of Things Journal, pp. 1–1, 2023.
  42. C. K. Dewa and J. Miura, “A framework for DRL navigation with state transition checking and velocity increment scheduling,” IEEE Access, vol. 8, pp. 191 826–191 838, 2020.
  43. Y. Li, G. Lan, and T. Zhao, “First-order policy optimization for robust markov decision process,” arXiv preprint arXiv:2209.10579, 2022.
  44. C.-A. Cheng, T. Xie, N. Jiang, and A. Agarwal, “Adversarially trained actor critic for offline reinforcement learning,” in International Conference on Machine Learning.   PMLR, 2022, pp. 3852–3878.
  45. S. Ji and M. Li, “CLNet: Complex input lightweight neural network designed for massive MIMO CSI feedback,” IEEE Wireless Communications Letters, vol. 10, no. 10, pp. 2318–2322, 2021.
  46. K. I. Ahmed, H. Tabassum, and E. Hossain, “Deep learning for radio resource allocation in multi-cell networks,” IEEE Network, vol. 33, no. 6, pp. 188–195, 2019.
  47. F. Liu, W. Zhao, Y. Chen, Z. Wang, and F. Dai, “Dynsnn: A dynamic approach to reduce redundancy in spiking neural networks,” in ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2022, pp. 2130–2134.
  48. H. Zhao, Z. Li, W. Su, and S. Xie, “Dynamic sparse coding-based value estimation network for deep reinforcement learning,” Neural Networks, vol. 168, pp. 180–193, 2023.
  49. D. Livne and K. Cohen, “Pops: Policy pruning and shrinking for deep reinforcement learning,” IEEE Journal of Selected Topics in Signal Processing, vol. 14, no. 4, pp. 789–801, 2020.
  50. L. Liang, H. Ye, and G. Y. Li, “Spectrum sharing in vehicular networks based on multi-agent reinforcement learning,” IEEE Journal on Selected Areas in Communications, vol. 37, no. 10, pp. 2282–2292, 2019.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (10)
  1. Jiawen Kang (204 papers)
  2. Yue Zhong (20 papers)
  3. Minrui Xu (57 papers)
  4. Jiangtian Nie (22 papers)
  5. Jinbo Wen (27 papers)
  6. Hongyang Du (154 papers)
  7. Dongdong Ye (6 papers)
  8. Xumin Huang (10 papers)
  9. Dusit Niyato (671 papers)
  10. Shengli Xie (36 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.