Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Land Cover Image Classification (2401.09607v1)

Published 17 Jan 2024 in cs.CV, cs.LG, and eess.IV

Abstract: Land Cover (LC) image classification has become increasingly significant in understanding environmental changes, urban planning, and disaster management. However, traditional LC methods are often labor-intensive and prone to human error. This paper explores state-of-the-art deep learning models for enhanced accuracy and efficiency in LC analysis. We compare convolutional neural networks (CNN) against transformer-based methods, showcasing their applications and advantages in LC studies. We used EuroSAT, a patch-based LC classification data set based on Sentinel-2 satellite images and achieved state-of-the-art results using current transformer models.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. P. Thanh Noi and M. Kappas, “Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using sentinel-2 imagery,” Sensors, vol. 18, no. 1, p. 18, 2017.
  2. Y. Qian, W. Zhou, J. Yan, W. Li, and L. Han, “Comparing machine learning classifiers for object-based land cover classification using very high resolution imagery,” Remote Sensing, vol. 7, no. 1, pp. 153–168, 2014.
  3. L. Ma, M. Li, X. Ma, L. Cheng, P. Du, and Y. Liu, “A review of supervised object-based land-cover image classification,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 130, pp. 277–293, 2017.
  4. F. F. Camargo, E. E. Sano, C. M. Almeida, J. C. Mura, and T. Almeida, “A comparative assessment of machine-learning techniques for land use and land cover classification of the brazilian tropical savanna using alos-2/palsar-2 polarimetric images,” Remote Sensing, vol. 11, no. 13, p. 1600, 2019.
  5. B. Ghimire, J. Rogan, V. R. Galiano, P. Panday, and N. Neeti, “An evaluation of bagging, boosting, and random forests for land-cover classification in cape cod, massachusetts, usa,” GIScience & Remote Sensing, vol. 49, no. 5, pp. 623–643, 2012.
  6. E. Adam, O. Mutanga, J. Odindi, and E. M. Abdel-Rahman, “Land-use/cover classification in a heterogeneous coastal landscape using rapideye imagery: evaluating the performance of random forest and support vector machines classifiers,” International Journal of Remote Sensing, vol. 35, no. 10, pp. 3440–3458, 2014.
  7. T. Shiraishi, T. Motohka, R. B. Thapa, M. Watanabe, and M. Shimada, “Comparative assessment of supervised classifiers for land use–land cover classification in a tropical region using time-series palsar mosaic data,” IEEE Journal of selected topics in applied earth observations and remote sensing, vol. 7, no. 4, pp. 1186–1199, 2014.
  8. E. Raczko and B. Zagajewski, “Comparison of support vector machine, random forest and neural network classifiers for tree species classification on airborne hyperspectral apex images,” European Journal of Remote Sensing, vol. 50, no. 1, pp. 144–154, 2017.
  9. R.-Y. Lee, D.-Y. Ou, Y.-S. Shiu, and T.-C. Lei, “Comparisons of using random forest and maximum likelihood classifiers with worldview-2 imagery for classifying crop types,” in Proceedings of the 36th Asian Conference Remote Sensing Foster, ACRS, Citeseer, 2015.
  10. P. K. Srivastava, D. Han, M. A. Rico-Ramirez, M. Bray, and T. Islam, “Selection of classification techniques for land use/land cover change investigation,” Advances in Space Research, vol. 50, no. 9, pp. 1250–1265, 2012.
  11. S. Pal and S. Ziaul, “Detection of land use and land cover change and land surface temperature in english bazar urban centre,” The Egyptian Journal of Remote Sensing and Space Science, vol. 20, no. 1, pp. 125–145, 2017.
  12. J. R. Otukei and T. Blaschke, “Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms,” International Journal of Applied Earth Observation and Geoinformation, vol. 12, pp. S27–S31, 2010.
  13. D. Marcos, M. Volpi, B. Kellenberger, and D. Tuia, “Land cover mapping at very high resolution with rotation equivariant cnns: Towards small yet accurate models,” ISPRS journal of photogrammetry and remote sensing, vol. 145, pp. 96–107, 2018.
  14. B. Huang, B. Zhao, and Y. Song, “Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery,” Remote Sensing of Environment, vol. 214, pp. 73–86, 2018.
  15. M. Rezaee, M. Mahdianpari, Y. Zhang, and B. Salehi, “Deep convolutional neural network for complex wetland classification using optical remote sensing imagery,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 11, no. 9, pp. 3030–3039, 2018.
  16. Y. Shi, D. Ma, J. Lv, and J. Li, “Actl: Asymmetric convolutional transfer learning for tree species identification based on deep neural network,” IEEE Access, vol. 9, pp. 13643–13654, 2021.
  17. W. Zhou, Z. Shao, C. Diao, and Q. Cheng, “High-resolution remote-sensing imagery retrieval using sparse features by auto-encoder,” Remote sensing letters, vol. 6, no. 10, pp. 775–783, 2015.
  18. A. Azarang, H. E. Manoochehri, and N. Kehtarnavaz, “Convolutional autoencoder-based multispectral image fusion,” IEEE access, vol. 7, pp. 35673–35683, 2019.
  19. M. Hu, C. Wu, L. Zhang, and B. Du, “Hyperspectral anomaly change detection based on autoencoder,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 3750–3762, 2021.
  20. C. Zhao, X. Wan, G. Zhao, B. Cui, W. Liu, and B. Qi, “Spectral-spatial classification of hyperspectral imagery based on stacked sparse autoencoder and random forest,” European journal of remote sensing, vol. 50, no. 1, pp. 47–63, 2017.
  21. X. Sun, F. Zhou, J. Dong, F. Gao, Q. Mu, and X. Wang, “Encoding spectral and spatial context information for hyperspectral image classification,” IEEE Geoscience and Remote Sensing Letters, vol. 14, no. 12, pp. 2250–2254, 2017.
  22. S. Mei, J. Ji, Y. Geng, Z. Zhang, X. Li, and Q. Du, “Unsupervised spatial–spectral feature learning by 3d convolutional autoencoder for hyperspectral classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 9, pp. 6808–6820, 2019.
  23. S. Liu, Q. Shi, and L. Zhang, “Few-shot hyperspectral image classification with unknown classes using multitask deep learning,” IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 6, pp. 5085–5102, 2020.
  24. D. Hong, J. Yao, D. Meng, Z. Xu, and J. Chanussot, “Multimodal gans: Toward crossmodal hyperspectral–multispectral image segmentation,” IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 6, pp. 5103–5113, 2020.
  25. D. Hong, Z. Han, J. Yao, L. Gao, B. Zhang, A. Plaza, and J. Chanussot, “Spectralformer: Rethinking hyperspectral image classification with transformers,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–15, 2021.
  26. Z. Xue, X. Tan, X. Yu, B. Liu, A. Yu, and P. Zhang, “Deep hierarchical vision transformer for hyperspectral and lidar data classification,” IEEE Transactions on Image Processing, vol. 31, pp. 3095–3110, 2022.
  27. Y. Qing, W. Liu, L. Feng, and W. Gao, “Improved transformer net for hyperspectral image classification,” Remote Sensing, vol. 13, no. 11, p. 2216, 2021.
  28. A. Jamali and M. Mahdianpari, “Swin transformer and deep convolutional neural networks for coastal wetland classification using sentinel-1, sentinel-2, and lidar data,” Remote Sensing, vol. 14, no. 2, p. 359, 2022.
  29. H. Dong, L. Zhang, and B. Zou, “Exploring vision transformers for polarimetric sar image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–15, 2021.
  30. J. Yao, B. Zhang, C. Li, D. Hong, and J. Chanussot, “Extended vision transformer (exvit) for land use and land cover classification: A multimodal deep learning framework,” IEEE Transactions on Geoscience and Remote Sensing, 2023.
  31. P. Helber, B. Bischke, A. Dengel, and D. Borth, “Eurosat: A novel dataset and deep learning benchmark for land use and land cover classification,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 12, no. 7, pp. 2217–2226, 2019.
  32. Phelber, “Eurosat: Land use and land cover classification with sentinel-2,” 2023.
  33. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” Advances in neural information processing systems, vol. 25, 2012.
  34. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.
  35. S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transformations for deep neural networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1492–1500, 2017.
  36. G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4700–4708, 2017.
  37. A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasudevan, et al., “Searching for mobilenetv3,” in Proceedings of the IEEE/CVF international conference on computer vision, pp. 1314–1324, 2019.
  38. M. Tan and Q. Le, “Efficientnetv2: Smaller models and faster training,” in International conference on machine learning, pp. 10096–10106, PMLR, 2021.
  39. Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, “A convnet for the 2020s,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 11976–11986, 2022.
  40. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al., “An image is worth 16x16 words: Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.
  41. Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin transformer: Hierarchical vision transformer using shifted windows,” in Proceedings of the IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.
  42. Z. Tu, H. Talebi, H. Zhang, F. Yang, P. Milanfar, A. Bovik, and Y. Li, “Maxvit: Multi-axis vision transformer,” in European conference on computer vision, pp. 459–479, Springer, 2022.
  43. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
  44. K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level performance on imagenet classification,” in Proceedings of the IEEE international conference on computer vision, pp. 1026–1034, 2015.
  45. Weights and Biases, “The ai developer platform,” 2023. Accessed: 2023-12-01.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Antonio Rangel (3 papers)
  2. Juan Terven (4 papers)
  3. Diana M. Cordova-Esparza (2 papers)
  4. E. A. Chavez-Urbiola (1 paper)
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets