Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Entanglement cost for infinite-dimensional physical systems (2401.09554v1)

Published 17 Jan 2024 in quant-ph, math-ph, and math.MP

Abstract: We prove that the entanglement cost equals the regularized entanglement of formation for any infinite-dimensional quantum state $\rho_{AB}$ with finite quantum entropy on at least one of the subsystems $A$ or $B$. This generalizes a foundational result in quantum information theory that was previously formulated only for operations and states on finite-dimensional systems. The extension to infinite dimensions is nontrivial because the conventional tools for establishing both the direct and converse bounds, i.e., strong typically, monotonicity, and asymptotic continuity, are no longer directly applicable. To address this problem, we construct a new entanglement dilution protocol for infinite-dimensional states implementable by local operations and a finite amount of one-way classical communication (one-way LOCC), using weak and strong typicality multiple times. We also prove the optimality of this protocol among all protocols even under infinite-dimensional separable operations by developing an argument based on alternative forms of monotonicity and asymptotic continuity of the entanglement of formation for infinite-dimensional states. Along the way, we derive a new integral representation for the quantum entropy of infinite-dimensional states, which we believe to be of independent interest. Our results allow us to fully characterize an important operational entanglement measure -- the entanglement cost -- for all infinite-dimensional physical systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (81)
  1. E. Schrödinger. Discussion of probability relations between separated systems. In Math. Proc. Cambridge Philos. Soc., volume 31, pages 555–563. Cambridge University Press, 1935.
  2. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett., 70:1895–1899, 1993.
  3. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett., 69:2881–2884, 1992.
  4. Bell nonlocality. Rev. Mod. Phys., 86(2):419, 2014.
  5. A. K. Ekert. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett., 67:661–663, 1991.
  6. R. Renner. Security of quantum key distribution. PhD thesis, ETH Zurich, 2005. Preprint arXiv:quant-ph/0512258.
  7. Everything you always wanted to know about LOCC (but were afraid to ask). Commun. Math. Phys., 328(1):303–326, 2014.
  8. Concentrating partial entanglement by local operations. Phys. Rev. A, 53:2046–2052, 1996.
  9. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett., 76:722–725, 1996.
  10. Mixed-state entanglement and quantum error correction. Phys. Rev. A, 54:3824–3851, 1996.
  11. The power of noisy quantum states and the advantage of resource dilution. Preprint arXiv:2210.14192, 2022.
  12. G. Vidal and J. I. Cirac. Irreversibility in asymptotic manipulations of entanglement. Phys. Rev. Lett., 86:5803–5806, 2001.
  13. Irreversibility for all bound entangled states. Phys. Rev. Lett., 95:190501, 2005.
  14. X. Wang and R. Duan. Irreversibility of asymptotic entanglement manipulation under quantum operations completely preserving positivity of partial transpose. Phys. Rev. Lett., 119:180506, 2017.
  15. L. Lami and B. Regula. No second law of entanglement manipulation after all. Nat. Phys., 19(2):184–189, 2023.
  16. L. Lami and B. Regula. Computable lower bounds on the entanglement cost of quantum channels. J. Phys. A, 56(3):035302, 2023.
  17. B. Regula and L. Lami. Reversibility of quantum resources through probabilistic protocols. Preprint arXiv:2309.07206, 2023.
  18. The asymptotic entanglement cost of preparing a quantum state. J. Phys. A, 34(35):6891–6898, 2001.
  19. Advances in quantum cryptography. Adv. Opt. Photon., 12(4):1012–1236, 2020.
  20. S. Pirandola. Limits and security of free-space quantum communications. Phys. Rev. Research, 3:013279, 2021.
  21. Evaluating capacities of bosonic Gaussian channels. Phys. Rev. A, 63:032312, 2001.
  22. Quantum capacities of bosonic channels. Phys. Rev. Lett., 98:130501, 2007.
  23. Quantum trade-off coding for bosonic communication. Phys. Rev. A, 86:062306, 2012.
  24. Fundamental rate-loss tradeoff for optical quantum key distribution. Nat. Commun., 5(1):5235, 2014.
  25. Fundamental limits of repeaterless quantum communications. Nat. Commun., 8(1):15043, 2017.
  26. Converse bounds for private communication over quantum channels. IEEE Trans. Inf. Theory, 63(3):1792–1817, 2017.
  27. Narrow bounds for the quantum capacity of thermal attenuators. Nat. Commun., 9(1):4339, 2018.
  28. Estimating quantum and private capacities of gaussian channels via degradable extensions. Phys. Rev. Lett., 127:210501, 2021.
  29. Maximum tolerable excess noise in CV-QKD and improved lower bound on two-way capacities. Preprint arXiv:2303.12867, 2023.
  30. Low-ground/high ground capacity regions analysis for bosonic Gaussian channels. Preprint arXiv:2306.16350, 2023.
  31. L. Lami and M. M. Wilde. Exact solution for the quantum and private capacities of bosonic dephasing channels. Nat. Photonics, 17(6):525–530, 2023.
  32. Ultimate classical communication rates of quantum optical channels. Nat. Photonics, 8(10):796–800, 2014.
  33. A solution of Gaussian optimizer conjecture for quantum channels. Commun. Math. Phys., 334(3):1553–1571, 2015.
  34. S. Hollands and K. Sanders. Entanglement Measures and Their Properties in Quantum Field Theory. SpringerBriefs in Mathematical Physics. Springer International Publishing, 2018.
  35. M. E. Shirokov. On properties of the space of quantum states and their application to the construction of entanglement monotones. Izv. Math., 74(4):849, 2010.
  36. M. A. Nielsen. Continuity bounds for entanglement. Phys. Rev. A, 61:064301, 2000.
  37. A. Winter. Tight uniform continuity bounds for quantum entropies: Conditional entropy, relative entropy distance and energy constraints. Commun. Math. Phys., 347(1):291–313, 2016.
  38. M. M. Wilde. Optimal uniform continuity bound for conditional entropy of classical–quantum states. Quantum Inf. Process., 19(2):61, 2020.
  39. Asymptotic state transformations of continuous variable resources. Commun. Math. Phys., 398(1):291–351, 2023.
  40. Asymptotically consistent measures of general quantum resources: Discord, non-markovianity, and non-gaussianity. Phys. Rev. A, 104:L020401, Aug 2021.
  41. D. Jonathan and M. B. Plenio. Minimal conditions for local pure-state entanglement manipulation. Phys. Rev. Lett., 83:1455–1458, 1999.
  42. Erratum: Minimal conditions for local pure-state entanglement manipulation [phys. rev. lett. 83, 1455 (1999)]. Phys. Rev. Lett., 84:4781–4781, May 2000.
  43. G. Vidal. Entanglement monotones. J. Mod. Opt., 47(2-3):355–376, 2000.
  44. V. Gheorghiu and R. B. Griffiths. Separable operations on pure states. Phys. Rev. A, 78:020304, 2008.
  45. M. E. Shirokov. Close-to-optimal continuity bound for the von Neumann entropy and other quasi-classical applications of the Alicki-Fannes-Winter technique. Preprint arXiv:2207.08791, 2022.
  46. On the notion of entanglement in Hilbert spaces. Russ. Math. Surv., 60(2):153–154, 2005. (English translation: Russ. Math. Surv. 60(2):359–360, 2005).
  47. A. S. Holevo. On the Choi–Jamiolkowski correspondence in infinite dimensions. Preprint arXiv:1004.0196, 2010.
  48. R. F. Werner. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A, 40:4277–4281, 1989.
  49. Quantum circuits with mixed states. In Proc. 30th ACM Symp. Theory Comput., STOC ’98, pages 20–30, New York, NY, USA, 1998. ACM.
  50. A. Winter. Energy-constrained diamond norm with applications to the uniform continuity of continuous variable channel capacities. Preprint arXiv:1712.10267, 2017.
  51. M. E. Shirokov. On the energy-constrained diamond norm and its application in quantum information theory. Probl. Inf. Transm., 54(1):20–33, 2018.
  52. S. Pirandola and C. Lupo. Ultimate precision of adaptive noise estimation. Phys. Rev. Lett., 118:100502, 2017.
  53. E. M. Rains. Entanglement purification via separable superoperators. Preprint arXiv:quant-ph/9707002, 1997.
  54. V. Vedral and M. B. Plenio. Entanglement measures and purification procedures. Phys. Rev. A, 57:1619–1633, 1998.
  55. A. W. Majewski. On entanglement of formation. J. Phys. A, 35(1):123, 2001.
  56. M. E. Shirokov. On properties of quantum channels related to their classical capacity. Theory Probab. Its Appl., 52(2):250–276, 2008.
  57. M. B. Hastings. Superadditivity of communication capacity using entangled inputs. Nat. Phys., 5(4):255–257, 2009.
  58. P. W. Shor. Equivalence of additivity questions in quantum information theory. Commun. Math. Phys., 246(3):473–473, 2004.
  59. M. Fekete. Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten. Math. Z., 17(1):228–249, 1923.
  60. M. M. Wilde. Quantum Information Theory. Cambridge University Press, 2nd edition, 2017.
  61. A. Uhlmann. Entropy and optimal decompositions of states relative to a maximal commutative subalgebra. Open Syst. Inf. Dyn., 5(3):209–228, 1998.
  62. On information divergence measures and a unified typicality. IEEE Trans. Inf. Theory, 56(12):5893–5905, 2010.
  63. R. W. Yeung. Information Theory and Network Coding. Information Technology: Transmission, Processing and Storage. Springer, New York, NY, USA, 2008.
  64. A. Wehrl. General properties of entropy. Rev. Mod. Phys., 50:221–260, 1978.
  65. V. Kaftal and G. Weiss. An infinite dimensional Schur-Horn theorem and majorization theory. J. Funct. Anal., 259(12):3115–3162, 2010.
  66. Elements of Information Theory. Wiley Series in Telecommunications and Signal Processing. Wiley-Interscience, New York, NY, USA, 2006.
  67. Rényi squashed entanglement, discord, and relative entropy differences. J. Phys. A, 48(39):395303, 2015.
  68. The uniqueness theorem for entanglement measures. J. Math. Phys., 43(9):4252–4272, 2002.
  69. M. E. Shirokov. Entropy characteristics of subsets of states. I. Izv. Math., 70(6):1265, 2006.
  70. W. Rudin. Functional Analysis. McGraw-Hill, 1991.
  71. P. E. Frenkel. Integral formula for quantum relative entropy implies data processing inequality. Quantum, 7:1102, 2023.
  72. A. Jenčová. Recoverability of quantum channels via hypothesis testing. Preprint arXiv:2303.11707, 2023.
  73. C. Hirche and M. Tomamichel. Quantum Rényi and f𝑓fitalic_f-divergences from integral representations. Preprint arXiv:2306.12343, 2023.
  74. Y. Li and P. Busch. Von Neumann entropy and majorization. Journal of Mathematical Analysis and Applications, 408(1):384–393, 2013.
  75. Entanglement convertibility for infinite-dimensional pure bipartite states. Phys. Rev. A, 70:050301, Nov 2004.
  76. ε𝜀\varepsilonitalic_ε-convertibility of entangled states and extension of schmidt rank in infinite-dimensional systems. Quantum Inf. Comput., 8(1):30–52, 2008.
  77. Daiki Asakura. An infinite dimensional birhkoff’s theorem, a majorization relation for two density matrices and locc-convertibility (the research of geometric structures in quantum information based on operator theory and related topics). RIMS Kokyuroku, 2033, 6 2017.
  78. General Quantum Resource Theories: Distillation, Formation and Consistent Resource Measures. Quantum, 4:355, November 2020.
  79. Operational quantification of continuous-variable quantum resources. Phys. Rev. Lett., 126:110403, 2021.
  80. Framework for resource quantification in infinite-dimensional general probabilistic theories. Phys. Rev. A, 103:032424, 2021.
  81. Ragib Zaman (https://math.stackexchange.com/users/14657/ragib zaman). If (an)⊂[0,∞)subscript𝑎𝑛0(a_{n})\subset[0,\infty)( italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ⊂ [ 0 , ∞ ) is non-increasing and ∑n=1∞an<∞superscriptsubscript𝑛1subscript𝑎𝑛\sum_{n=1}^{\infty}a_{n}<\infty∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT < ∞, then limn→∞n⁢an=0subscript→𝑛𝑛subscript𝑎𝑛0\lim\limits_{n\to\infty}{na_{n}}=0roman_lim start_POSTSUBSCRIPT italic_n → ∞ end_POSTSUBSCRIPT italic_n italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = 0. Mathematics Stack Exchange.
Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 64 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube