Towards large-scale quantum optimization solvers with few qubits (2401.09421v2)
Abstract: We introduce a variational quantum solver for combinatorial optimizations over $m=\mathcal{O}(nk)$ binary variables using only $n$ qubits, with tunable $k>1$. The number of parameters and circuit depth display mild linear and sublinear scalings in $m$, respectively. Moreover, we analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature. This leads to unprecedented quantum-solver performances. For $m=7000$, numerical simulations produce solutions competitive in quality with state-of-the-art classical solvers. In turn, for $m=2000$, an experiment with $n=17$ trapped-ion qubits featured MaxCut approximation ratios estimated to be beyond the hardness threshold $0.941$. To our knowledge, this is the highest quality attained experimentally on such sizes. Our findings offer a novel heuristics for quantum-inspired solvers as well as a promising route towards solving commercially-relevant problems on near term quantum devices.
- E. Farhi, J. Goldstone, and S. Gutmann, A quantum approximate optimization algorithm, arXiv (2014), arXiv:1411.4028 .
- G. G. Guerreschi and A. Y. Matsuura, QAOA for max-cut requires hundreds of qubits for quantum speed-up, Scientific Reports 9, 6903 (2019).
- J. Wurtz and P. Love, Maxcut quantum approximate optimization algorithm performance guarantees for p>𝑝absentp>italic_p > 1, Physical Review A 103, 042612 (2021).
- C. Dürr and P. Hoyer, A quantum algorithm for finding the minimum, CoRR quant-ph/9607014 (1996).
- A. Ambainis, Quantum search algorithms, ACM SIGACT News 35, 22 (2004).
- A. Montanaro, Quantum speedup of branch-and-bound algorithms, Physical Review Research 2, 013056 (2020).
- E. Campbell, A. Khurana, and A. Montanaro, Applying quantum algorithms to constraint satisfaction problems, Quantum 3, 167 (2019).
- J. Preskill, Quantum Computing in the NISQ era and beyond, Quantum 2, 79 (2018).
- D. Stilck França and R. Garcia-Patron, Limitations of optimization algorithms on noisy quantum devices, Nature Physics 17, 1221 (2021).
- L. Bittel and M. Kliesch, Training variational quantum algorithms is np-hard, Physical review letters 127, 120502 (2021).
- E. R. Anschuetz and B. T. Kiani, Quantum variational algorithms are swamped with traps, Nature Communications 13, 7760 (2022).
- D. García-Martín, M. Larocca, and M. Cerezo, Effects of noise on the overparametrization of quantum neural networks, arXiv preprint arXiv:2302.05059 (2023a).
- C. Choi and Y. Ye, Solving sparse semidefinite programs using the dual scaling algorithm with an iterative solver, https://web.stanford.edu/~yyye/yyye/cgsdp1.pdf (2000).
- S. Burer and R. D. C. Monteiro, A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization, Mathematical Programming 10.1007/s10107-002-0352-8 (2003).
- I. Dunning, S. Gupta, and J. Silberholz, What works best when? a systematic evaluation of heuristics for Max-Cut and QUBO, INFORMS Journal on Computing 30, 608 (2018).
- Y. Ye, Gset test problems, https://web.stanford.edu/~yyye/yyye/Gset/ (unpublished).
- Y. Li and S. C. Benjamin, Efficient variational quantum simulator incorporating active error minimization, Phys. Rev. X 7, 021050 (2017).
- K. Temme, S. Bravyi, and J. M. Gambetta, Error mitigation for short-depth quantum circuits, Phys. Rev. Lett. 119, 180509 (2017).
- J. D. Biamonte, Nonperturbative k-body to two-body commuting conversion hamiltonians and embedding problem instances into ising spins, Physical Review A 77, 10.1103/physreva.77.052331 (2008).
- J. Håstad, Some optimal inapproximability results, J. ACM 48, 798–859 (2001).
- M. X. Goemans and D. P. Williamson, Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming, J. ACM 42, 1115–1145 (1995).
- S. Poljak and D. Turzík, A polynomial time heuristic for certain subgraph optimization problems with guaranteed worst case bound, Discrete Mathematics 58, 99 (1986).
- S. Bylka, A. Idzik, and Z. Tuza, Maximum cuts: improvementsand local algorithmic analogues of the edwards-erdos inequality, Discrete Mathematics 194, 39 (1999).
- G. Rinaldi, Rudy graph generator, http://www-user.tu-chemnitz.de/~helmberg/rudy.tar.gz (unpublished).
- G. Pataki and S. H. Schmieta, The DIMACS library of mixed semidefinite-quadratic-linear programs, http://archive.dimacs.rutgers.edu/Challenges/Seventh/Instances/ (unpublished).
- U. Benlic and J.-K. Hao, Breakout local search for the Max-Cut problem, Engineering Applications of Artificial Intelligence 26, 1162 (2013).
- D. García-Martín, M. Larocca, and M. Cerezo, Deep quantum neural networks form gaussian processes (2023b), arXiv:2305.09957 [quant-ph] .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.