Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Two-Qubit Circuits for Universal Fault-Tolerant Quantum Computation (2001.05997v4)

Published 16 Jan 2020 in quant-ph

Abstract: We study two-qubit circuits over the Clifford+CS gate set, which consists of the Clifford gates together with the controlled-phase gate CS=diag(1,1,1,i). The Clifford+CS gate set is universal for quantum computation and its elements can be implemented fault-tolerantly in most error-correcting schemes through magic state distillation. Since non-Clifford gates are typically more expensive to perform in a fault-tolerant manner, it is often desirable to construct circuits that use few CS gates. In the present paper, we introduce an efficient and optimal synthesis algorithm for two-qubit Clifford+CS operators. Our algorithm inputs a Clifford+CS operator U and outputs a Clifford+CS circuit for U, which uses the least possible number of CS gates. Because the algorithm is deterministic, the circuit it associates to a Clifford+CS operator can be viewed as a normal form for that operator. We give an explicit description of these normal forms and use this description to derive a worst-case lower bound of 5log(1/epsilon)+O(1) on the number of CS gates required to epsilon-approximate elements of SU(4). Our work leverages a wide variety of mathematical tools that may find further applications in the study of fault-tolerant quantum circuits.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com