Electrically charged black hole solutions in semiclassical gravity and dynamics of linear perturbations (2401.08783v2)
Abstract: We explore quantum corrections of electrically charged black holes subject to vacuum polarization effects of fermion fields in QED. Solving this problem exactly is challenging so we restrict to perturbative corrections that one can obtain using the heat kernel expansion in the one-loop effective action for electrons. Starting from the corrections originally computed by Drummond and Hathrell, we solve the full semiclassical Einstein-Maxwell system of coupled equations to leading order in Planck's constant, and find a new electrically charged, static black hole solution. To probe these quantum corrections, we study electromagnetic and gravitational (axial) perturbations on this background, and derive the coupled system of Regge-Wheeler master equations that govern the propagation of these waves. In the classical limit our results agree with previous findings in the literature. We finally compare these results with those that one can obtain by working out the Euler-Heisenberg effective action. We find again a new electrically charged static black hole spacetime, and derive the coupled system of Regge-Wheeler equations governing the propagation of axial electromagnetic and gravitational perturbations. Results are qualitatively similar in both cases. We briefly discuss some challenges found in the numerical computation of the quasinormal mode frequency spectra when quantum corrections are included.
- N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 1982).
- R. M. Wald, Quantum Field Theory in Curved Space-Time and Black Hole Thermodynamics, Chicago Lectures in Physics (University of Chicago Press, Chicago, IL, 1995).
- L. Parker and D. Toms, Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2009).
- L. Barack et al., Class. Quant. Grav. 36, 143001 (2019), arXiv:1806.05195 [gr-qc] .
- C. P. Burgess, Living Rev. Rel. 7, 5 (2004), arXiv:gr-qc/0311082 .
- K. D. Kokkotas and B. G. Schmidt, Living Rev. Rel. 2, 2 (1999), arXiv:gr-qc/9909058 .
- R. A. Konoplya and A. Zhidenko, Rev. Mod. Phys. 83, 793 (2011), arXiv:1102.4014 [gr-qc] .
- M. H.-Y. Cheung et al., Phys. Rev. Lett. 130, 081401 (2023), arXiv:2208.07374 [gr-qc] .
- K. Mitman et al., Phys. Rev. Lett. 130, 081402 (2023), arXiv:2208.07380 [gr-qc] .
- H.-P. Nollert, Phys. Rev. D 53, 4397 (1996), arXiv:gr-qc/9602032 .
- G. V. Dunne, “Heisenberg–euler effective lagrangians: Basics and extensions,” in From Fields to Strings: Circumnavigating Theoretical Physics (World Scientific, 2005) p. 445–522.
- J. Z. Simon, Phys. Rev. D 41, 3720 (1990).
- J. Z. Simon, Phys. Rev. D 43, 3308 (1991).
- I. T. Drummond and S. J. Hathrell, Phys. Rev. D 22, 343 (1980).
- S. Chen and J. Jing, Phys. Rev. D 88, 064058 (2013), arXiv:1307.7459 [gr-qc] .
- R. M. Wald, General Relativity (Chicago Univ. Pr., Chicago, USA, 1984).
- J. M. M.-G. et.al., (2002-2013a).
- J. M. M.-G. et.al., (-2013b).
- T. Nutma, Comput. Phys. Commun. 185, 1719 (2014), arXiv:1308.3493 [cs.SC] .
- D. Vassilevich, Physics Reports 388, 279 (2003).
- I. G. Avramidi, Nucl. Phys. B 355, 712 (1991), [Erratum: Nucl.Phys.B 509, 557–558 (1998)].
- I. G. Avramidi, Phys. Lett. B 238, 92 (1990).
- V. Cardoso and J. P. S. Lemos, Phys. Rev. D 64, 084017 (2001), arXiv:gr-qc/0105103 .
- F. J. Zerilli, Phys. Rev. D 9, 860 (1974).
- G. Abbas and H. Rehman, (2023), arXiv:2309.03236 [gr-qc] .
- S. Chandrasekhar, The mathematical theory of black holes (1985).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.