Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Quantum Natural Policy Gradients (2401.08307v1)

Published 16 Jan 2024 in quant-ph and cs.LG

Abstract: This research delves into the role of the quantum Fisher Information Matrix (FIM) in enhancing the performance of Parameterized Quantum Circuit (PQC)-based reinforcement learning agents. While previous studies have highlighted the effectiveness of PQC-based policies preconditioned with the quantum FIM in contextual bandits, its impact in broader reinforcement learning contexts, such as Markov Decision Processes, is less clear. Through a detailed analysis of L\"owner inequalities between quantum and classical FIMs, this study uncovers the nuanced distinctions and implications of using each type of FIM. Our results indicate that a PQC-based agent using the quantum FIM without additional insights typically incurs a larger approximation error and does not guarantee improved performance compared to the classical FIM. Empirical evaluations in classic control benchmarks suggest even though quantum FIM preconditioning outperforms standard gradient ascent, in general it is not superior to classical FIM preconditioning.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com