Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Shape-Texture Statistics for Completely Blind Image Quality Evaluation (2401.08107v1)

Published 16 Jan 2024 in cs.CV and cs.MM

Abstract: Opinion-Unaware Blind Image Quality Assessment (OU-BIQA) models aim to predict image quality without training on reference images and subjective quality scores. Thereinto, image statistical comparison is a classic paradigm, while the performance is limited by the representation ability of visual descriptors. Deep features as visual descriptors have advanced IQA in recent research, but they are discovered to be highly texture-biased and lack of shape-bias. On this basis, we find out that image shape and texture cues respond differently towards distortions, and the absence of either one results in an incomplete image representation. Therefore, to formulate a well-round statistical description for images, we utilize the shapebiased and texture-biased deep features produced by Deep Neural Networks (DNNs) simultaneously. More specifically, we design a Shape-Texture Adaptive Fusion (STAF) module to merge shape and texture information, based on which we formulate qualityrelevant image statistics. The perceptual quality is quantified by the variant Mahalanobis Distance between the inner and outer Shape-Texture Statistics (DSTS), wherein the inner and outer statistics respectively describe the quality fingerprints of the distorted image and natural images. The proposed DSTS delicately utilizes shape-texture statistical relations between different data scales in the deep domain, and achieves state-of-the-art (SOTA) quality prediction performance on images with artificial and authentic distortions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Yixuan Li (183 papers)
  2. Peilin Chen (19 papers)
  3. Hanwei Zhu (18 papers)
  4. Keyan Ding (18 papers)
  5. Leida Li (26 papers)
  6. Shiqi Wang (163 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.