Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DeepDC: Deep Distance Correlation as a Perceptual Image Quality Evaluator (2211.04927v2)

Published 9 Nov 2022 in cs.CV and eess.IV

Abstract: ImageNet pre-trained deep neural networks (DNNs) show notable transferability for building effective image quality assessment (IQA) models. Such a remarkable byproduct has often been identified as an emergent property in previous studies. In this work, we attribute such capability to the intrinsic texture-sensitive characteristic that classifies images using texture features. We fully exploit this characteristic to develop a novel full-reference IQA (FR-IQA) model based exclusively on pre-trained DNN features. Specifically, we compute the distance correlation, a highly promising yet relatively under-investigated statistic, between reference and distorted images in the deep feature domain. In addition, the distance correlation quantifies both linear and nonlinear feature relationships, which is far beyond the widely used first-order and second-order statistics in the feature space. We conduct comprehensive experiments to demonstrate the superiority of the proposed quality model on five standard IQA datasets, one perceptual similarity dataset, two texture similarity datasets, and one geometric transformation dataset. Moreover, we optimize the proposed model to generate a broad spectrum of texture patterns, by treating the model as the style loss function for neural style transfer (NST). Extensive experiments demonstrate that the proposed texture synthesis and NST methods achieve the best quantitative and qualitative results. We release our code at https://github.com/h4nwei/DeepDC.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (97)
  1. W. Lin and C.-C. J. Kuo, “Perceptual visual quality metrics: A survey,” Journal of Visual Communication and Image Representation, vol. 22, no. 4, pp. 297–312, 2011.
  2. G. Zhai and X. Min, “Perceptual image quality assessment: A survey,” Science China Information Sciences, vol. 63, pp. 1–52, 2020.
  3. Z. Duanmu, W. Liu, Z. Wang, and Z. Wang, “Quantifying visual image quality: A bayesian view,” Annual Review of Vision Science, vol. 7, no. 1, pp. 437–464, 2021.
  4. H. Yang, Y. Fang, and W. Lin, “Perceptual quality assessment of screen content images,” IEEE Transactions on Image Processing, vol. 24, no. 11, pp. 4408–4421, 2015.
  5. K. Gu, G. Zhai, W. Lin, and M. Liu, “The analysis of image contrast: From quality assessment to automatic enhancement,” IEEE Transactions on Cybernetics, vol. 46, no. 1, pp. 284–297, 2015.
  6. L. Li, Y. Zhou, K. Gu, W. Lin, and S. Wang, “Quality assessment of DIBR-synthesized images by measuring local geometric distortions and global sharpness,” IEEE Transactions on Multimedia, vol. 20, no. 4, pp. 914–926, 2017.
  7. K. Zhang, Y. Li, W. Zuo, L. Zhang, L. Van Gool, and R. Timofte, “Plug-and-play image restoration with deep denoiser prior,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 10, pp. 6360–6376, 2021.
  8. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.
  9. R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable effectiveness of deep features as a perceptual metric,” in IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 586–595.
  10. K. Ding, K. Ma, S. Wang, and E. P. Simoncelli, “Image quality assessment: Unifying structure and texture similarity,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 5, pp. 2567–2581, 2020.
  11. K. Ding, Y. Liu, X. Zou, S. Wang, and K. Ma, “Locally adaptive structure and texture similarity for image quality assessment,” ACM International Conference on Multimedia, pp. 2483–2491, 2021.
  12. M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “GANs trained by a two time-scale update rule converge to a local nash equilibrium,” in Neural Information Processing Systems, 2017, pp. 1–9.
  13. I. Kligvasser, T. Shaham, Y. Bahat, and T. Michaeli, “Deep self-dissimilarities as powerful visual fingerprints,” in Neural Information Processing Systems, 2021, pp. 3939–3951.
  14. X. Liao, B. Chen, H. Zhu, S. Wang, M. Zhou, and S. Kwong, “DeepWSD: Projecting degradations in perceptual space to wasserstein distance in deep feature space,” in ACM International Conference on Multimedia, 2022.
  15. M. Kumar, N. Houlsby, N. Kalchbrenner, and E. D. Cubuk, “Do better imagenet classifiers assess perceptual similarity better?” in Transactions on Machine Learning Research, 2022. [Online]. Available: https://openreview.net/forum?id=qrGKGZZvH0
  16. R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann, and W. Brendel, “ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness,” in International Conference on Learning Representations, 2018, pp. 1–22.
  17. K. Hermann, T. Chen, and S. Kornblith, “The origins and prevalence of texture bias in convolutional neural networks,” Neural Information Processing Systems, vol. 33, pp. 19 000–19 015, 2020.
  18. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and F.-F. Li, “ImageNet: A large-scale hierarchical image database,” in IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 248–255.
  19. L. Gatys, A. S. Ecker, and M. Bethge, “Texture synthesis using convolutional neural networks,” in Neural Information Processing Systems, 2015, pp. 1–8.
  20. E. Heitz, K. Vanhoey, T. Chambon, and L. Belcour, “A sliced wasserstein loss for neural texture synthesis,” in IEEE Conference on Computer Vision and Pattern Recognition, 2021, pp. 9412–9420.
  21. P. Navarrete Michelini, D. Zhu, and H. Liu, “Multi–scale recursive and perception–distortion controllable image super–resolution,” in European Conference on Computer Vision Workshops, 2018, pp. 1–14.
  22. B. Julesz, “Visual pattern discrimination,” IRE Transactions on Information Theory, vol. 8, no. 2, pp. 84–92, 1962.
  23. J. Portilla and E. P. Simoncelli, “A parametric texture model based on joint statistics of complex wavelet coefficients,” International journal of computer vision, vol. 40, pp. 49–70, 2000.
  24. G. J. Székely, M. L. Rizzo, and N. K. Bakirov, “Measuring and testing dependence by correlation of distances,” The Annals of Statistics, vol. 35, no. 6, pp. 2769–2794, 2007.
  25. I. Dokmanic, R. Parhizkar, J. Ranieri, and M. Vetterli, “Euclidean distance matrices: Essential theory, algorithms, and applications,” IEEE Signal Processing Magazine, vol. 32, no. 6, pp. 12–30, 2015.
  26. G. J. Székely and M. L. Rizzo, “Brownian distance covariance,” The Annals of Applied Statistics, vol. 3, no. 4, pp. 1236–1265, 2009.
  27. R. Mantiuk, K. J. Kim, A. G. Rempel, and W. Heidrich, “HDR-VDP-2: A calibrated visual metric for visibility and quality predictions in all luminance conditions,” ACM Transactions on Graphics, vol. 30, no. 4, pp. 1–14, 2011.
  28. W. Xue, L. Zhang, X. Mou, and A. C. Bovik, “Gradient magnitude similarity deviation: A highly efficient perceptual image quality index,” IEEE Transactions on Image Processing, vol. 23, no. 2, pp. 684–695, 2013.
  29. Y. Fang, J. Yan, J. Liu, S. Wang, Q. Li, and Z. Guo, “Objective quality assessment of screen content images by uncertainty weighting,” IEEE Transactions on Image Processing, vol. 26, no. 4, pp. 2016–2027, 2017.
  30. X. Min, K. Ma, K. Gu, G. Zhai, Z. Wang, and W. Lin, “Unified blind quality assessment of compressed natural, graphic, and screen content images,” IEEE Transactions on Image Processing, vol. 26, no. 11, pp. 5462–5474, 2017.
  31. S. Wang, L. Ma, Y. Fang, W. Lin, S. Ma, and W. Gao, “Just noticeable difference estimation for screen content images,” IEEE Transactions on Image Processing, vol. 25, no. 8, pp. 3838–3851, 2016.
  32. J. Mannos and D. Sakrison, “The effects of a visual fidelity criterion of the encoding of images,” IEEE Transactions on Information Theory, vol. 20, no. 4, pp. 525–536, 1974.
  33. W. Lin, D. Li, and P. Xue, “Discriminative analysis of pixel difference towards picture quality prediction,” in International Conference on Image Processing, 2003, pp. 193–196.
  34. Z. Wang and A. C. Bovik, “Mean squared error: Love it or leave it? A new look at signal fidelity measures,” IEEE Signal Processing Magazine, vol. 26, no. 1, pp. 98–117, 2009.
  35. A. B. Watson, “DCTune: A technique for visual optimization of dct quantization matrices for individual images,” in International Symposium Digest of Technical Papers, 1993, pp. 946–946.
  36. J. Malo, A. Pons, and J. M. Artigas, “Subjective image fidelity metric based on bit allocation of the human visual system in the DCT domain,” Image and Vision Computing, vol. 15, no. 7, pp. 535–548, 1997.
  37. P. C. Teo and D. J. Heeger, “Perceptual image distortion,” in International Conference on Image Processing, 1994, pp. 982–986.
  38. A. B. Watson, G. Y. Yang, J. A. Solomon, and J. Villasenor, “Visibility of wavelet quantization noise,” IEEE Transactions on image processing, vol. 6, no. 8, pp. 1164–1175, 1997.
  39. E. C. Larson and D. M. Chandler, “Most apparent distortion: Full-reference image quality assessment and the role of strategy,” Journal of electronic imaging, vol. 19, no. 1, pp. 1–21, 2010.
  40. V. Laparra, J. Ballé, A. Berardino, and E. P. Simoncelli, “Perceptual image quality assessment using a normalized laplacian pyramid,” Electronic Imaging, vol. 2016, no. 16, pp. 1–6, 2016.
  41. Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural similarity for image quality assessment,” in Asilomar Conference on Signals, Systems & Computers, 2003, pp. 1398–1402.
  42. Z. Wang and Q. Li, “Information content weighting for perceptual image quality assessment,” IEEE Transactions on Image Processing, vol. 20, no. 5, pp. 1185–1198, 2010.
  43. Z. Wang and E. P. Simoncelli, “Translation insensitive image similarity in complex wavelet domain,” in IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005, pp. 573–576.
  44. L. Zhang, L. Zhang, X. Mou, and D. Zhang, “FSIM: A feature similarity index for image quality assessment,” IEEE Transactions on Image Processing, vol. 20, no. 8, pp. 2378–2386, 2011.
  45. L. Zhang, Y. Shen, and H. Li, “VSI: A visual saliency-induced index for perceptual image quality assessment,” IEEE Transactions on Image processing, vol. 23, no. 10, pp. 4270–4281, 2014.
  46. H. R. Sheikh, A. C. Bovik, and G. De Veciana, “An information fidelity criterion for image quality assessment using natural scene statistics,” IEEE Transactions on Image Processing, vol. 14, no. 12, pp. 2117–2128, 2005.
  47. H. R. Sheikh and A. C. Bovik, “Image information and visual quality,” IEEE Transactions on Image Processing, vol. 15, no. 2, pp. 430–444, 2006.
  48. H.-W. Chang, H. Yang, Y. Gan, and M.-H. Wang, “Sparse feature fidelity for perceptual image quality assessment,” IEEE Transactions on Image Processing, vol. 22, no. 10, pp. 4007–4018, 2013.
  49. Z. Wang, G. Wu, H. R. Sheikh, E. P. Simoncelli, E.-H. Yang, and A. C. Bovik, “Quality-aware images,” IEEE Transactions on Image Processing, vol. 15, no. 6, pp. 1680–1689, 2006.
  50. R. Soundararajan and A. C. Bovik, “RRED indices: Reduced reference entropic differencing for image quality assessment,” IEEE Transactions on Image Processing, vol. 21, no. 2, pp. 517–526, 2011.
  51. L. Lin, G. Wang, W. Zuo, X. Feng, and L. Zhang, “Cross-domain visual matching via generalized similarity measure and feature learning,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1089–1102, 2016.
  52. T.-J. Liu, W. Lin, and C.-C. J. Kuo, “Image quality assessment using multi-method fusion,” IEEE Transactions on Image Processing, vol. 22, no. 5, pp. 1793–1807, 2012.
  53. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in International Conference on Learning Representations, 2015, pp. 1–6.
  54. F. Gao, Y. Wang, P. Li, M. Tan, J. Yu, and Y. Zhu, “DeepSim: Deep similarity for image quality assessment,” Neurocomputing, vol. 257, pp. 104–114, 2017.
  55. A. Ghildyal and F. Liu, “Shift-tolerant perceptual similarity metric,” in European Conference on Computer Vision, 2022, pp. 91–107.
  56. J. Kim and S. Lee, “Deep learning of human visual sensitivity in image quality assessment framework,” in IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1676–1684.
  57. S. Bosse, D. Maniry, K.-R. Müller, T. Wiegand, and W. Samek, “Deep neural networks for no-reference and full-reference image quality assessment,” IEEE Transactions on Image Processing, vol. 27, no. 1, pp. 206–219, 2017.
  58. E. Prashnani, H. Cai, Y. Mostofi, and P. Sen, “PieAPP: Perceptual image-error assessment through pairwise preference,” in IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 1808–1817.
  59. S. Bhardwaj, I. Fischer, J. Ballé, and T. Chinen, “An unsupervised information-theoretic perceptual quality metric,” in Neural Information Processing Systems, 2020, pp. 13–24.
  60. Y. Cao, Z. Wan, D. Ren, Z. Yan, and W. Zuo, “Incorporating semi-supervised and positive-unlabeled learning for boosting full reference image quality assessment,” in IEEE Conference on Computer Vision and Pattern Recognition, 2022, pp. 5851–5861.
  61. Z. Wang and E. P. Simoncelli, “Maximum differentiation (MAD) competition: A methodology for comparing computational models of perceptual quantities,” Journal of Vision, vol. 8, no. 12, pp. 1–13, 2008.
  62. A. Berardino, V. Laparra, J. Ballé, and E. Simoncelli, “Eigen-distortions of hierarchical representations,” in Neural Information Processing Systems, 2017, pp. 3530–3539.
  63. E. P. Simoncelli and W. T. Freeman, “The steerable pyramid: A flexible architecture for multi-scale derivative computation,” in IEEE International Conference on Image Processing, 1995, pp. 444–447.
  64. H. Zhu, B. Chen, l. Zhu, and S. Wang, “Learning spatiotemporal interactions for user-generated video quality assessment,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 33, no. 3, pp. 1031–1042, 2023.
  65. H. R. Sheikh, Z. Wang, L. Cormack, and A. C. Bovik, “Image and video quality assessment research at LIVE,” 2006. [Online]. Available: https://live.ece.utexas.edu/research/Quality/subjective.htm
  66. N. Ponomarenko, L. Jin, O. Ieremeiev, V. Lukin, K. Egiazarian, J. Astola, B. Vozel, K. Chehdi, M. Carli, F. Battisti et al., “Image database TID2013: Peculiarities, results and perspectives,” Signal Processing: Image Communication, vol. 30, pp. 57–77, 2015.
  67. H. Lin, V. Hosu, and D. Saupe, “KADID-10k: A large-scale artificially distorted IQA database,” in International Conference on Quality of Multimedia Experience, 2019, pp. 1–3.
  68. G. Jinjin, C. Haoming, C. Haoyu, Y. Xiaoxing, J. S. Ren, and D. Chao, “PIPAL: A large-scale image quality assessment dataset for perceptual image restoration,” in European Conference on Computer Vision, 2020, pp. 633–651.
  69. VQEG, “Final report from the video quality experts group on the validation of objective models of video quality assessment,” 2000. [Online]. Available: http://www.vqeg.org
  70. S. A. Golestaneh, M. M. Subedar, and L. J. Karam, “The effect of texture granularity on texture synthesis quality,” Applications of Digital Image Processing XXXVIII, vol. 9599, pp. 356–361, 2015.
  71. J. Zujovic, T. N. Pappas, and D. L. Neuhoff, “Structural texture similarity metrics for image analysis and retrieval,” IEEE Transactions on Image Processing, vol. 22, no. 7, pp. 2545–2558, 2013.
  72. M. Alfarraj, Y. Alaudah, and G. AlRegib, “Content-adaptive non-parametric texture similarity measure,” in IEEE International Workshop on Multimedia Signal Processing, 2016, pp. 1–6.
  73. A. Golestaneh and L. J. Karam, “Synthesized texture quality assessment via multi-scale spatial and statistical texture attributes of image and gradient magnitude coefficients,” in IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2018, pp. 738–744.
  74. X. Snelgrove, “High-resolution multi-scale neural texture synthesis,” in SIGGRAPH Asia Technical Briefs, 2017, pp. 1–4.
  75. L. McInnes, J. Healy, N. Saul, and L. Grossberger, “UMAP: Uniform manifold approximation and projection,” The Journal of Open Source Software, vol. 3, no. 29, pp. 861–862, 2018.
  76. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
  77. G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” in IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 4700–4708.
  78. R. Mechrez, I. Talmi, and L. Zelnik-Manor, “The contextual loss for image transformation with non-aligned data,” in European Conference on Computer Vision, 2018, pp. 768–783.
  79. Z. Guo, L. Zhang, and D. Zhang, “A completed modeling of local binary pattern operator for texture classification,” IEEE Transactions on Image Processing, vol. 19, no. 6, pp. 1657–1663, 2010.
  80. X. Dong, J. Dong, and M. J. Chantler, “Perceptual texture similarity estimation: An evaluation of computational features,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 7, pp. 2429–2448, 2020.
  81. L.-Y. Wei and M. Levoy, “Fast texture synthesis using tree-structured vector quantization,” in Annual Conference on Computer Graphics and Interactive Techniques, 2000, pp. 479–488.
  82. A. A. Efros and T. K. Leung, “Texture synthesis by non-parametric sampling,” in IEEE International Conference on Computer Vision, 1999, pp. 1033–1038.
  83. V. Kwatra, I. Essa, A. Bobick, and N. Kwatra, “Texture optimization for example-based synthesis,” in ACM SIGGRAPH, 2005, pp. 795–802.
  84. K. Tsukida and M. R. Gupta, “How to analyze paired comparison data,” Technical Report UWEETR-2011-0004, University of Washington, May 2011.
  85. R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A limited memory algorithm for bound constrained optimization,” SIAM Journal on Scientific Computing, vol. 16, no. 5, pp. 1190–1208, 1995.
  86. J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style transfer and super-resolution,” in European Conference on Computer Vision, 2016, pp. 694–711.
  87. X. Huang and S. Belongie, “Arbitrary style transfer in real-time with adaptive instance normalization,” in IEEE International Conference on Computer Vision, 2017, pp. 1501–1510.
  88. J. Li, D. Xu, and S. Yao, “Sliced wasserstein distance for neural style transfer,” Computers & Graphics, vol. 102, pp. 89–98, 2022.
  89. Y. Jing, Y. Yang, Z. Feng, J. Ye, Y. Yu, and M. Song, “Neural style transfer: A review,” IEEE Transactions on Vsualization and Computer Graphics, vol. 26, no. 11, pp. 3365–3385, 2019.
  90. Y. Li, C. Fang, J. Yang, Z. Wang, X. Lu, and M.-H. Yang, “Universal style transfer via feature transforms,” Neural Information Processing Systems, vol. 30, 2017.
  91. E. Risser, P. Wilmot, and C. Barnes, “Stable and controllable neural texture synthesis and style transfer using histogram losses,” arXiv preprint arXiv:1701.08893, 2017.
  92. Y. Zhang, M. Li, R. Li, K. Jia, and L. Zhang, “Exact feature distribution matching for arbitrary style transfer and domain generalization,” in IEEE Conference on Computer Vision and Pattern Recognition, 2022, pp. 8035–8045.
  93. D. Kotovenko, A. Sanakoyeu, S. Lang, and B. Ommer, “Content and style disentanglement for artistic style transfer,” in IEEE International Conference on Computer Vision, 2019, pp. 4422–4431.
  94. S. Azadi, M. Fisher, V. G. Kim, Z. Wang, E. Shechtman, and T. Darrell, “Multi-content GAN for few-shot font style transfer,” in IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7564–7573.
  95. T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft COCO: Common objects in context,” in European Conference on Computer Vision, 2014, pp. 740–755.
  96. K. Nichol, “Painter by numbers, Wikiart,” 2016. [Online]. Available: https://www.kaggle.com/c/painter-by-numbers
  97. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR, vol. abs/1412.6980, 2014.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com