Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Belief Miner: A Methodology for Discovering Causal Beliefs and Causal Illusions from General Populations (2401.08020v1)

Published 16 Jan 2024 in cs.HC

Abstract: Causal belief is a cognitive practice that humans apply everyday to reason about cause and effect relations between factors, phenomena, or events. Like optical illusions, humans are prone to drawing causal relations between events that are only coincidental (i.e., causal illusions). Researchers in domains such as cognitive psychology and healthcare often use logistically expensive experiments to understand causal beliefs and illusions. In this paper, we propose Belief Miner, a crowdsourcing method for evaluating people's causal beliefs and illusions. Our method uses the (dis)similarities between the causal relations collected from the crowds and experts to surface the causal beliefs and illusions. Through an iterative design process, we developed a web-based interface for collecting causal relations from a target population. We then conducted a crowdsourced experiment with 101 workers on Amazon Mechanical Turk and Prolific using this interface and analyzed the collected data with Belief Miner. We discovered a variety of causal beliefs and potential illusions, and we report the design implications for future research.

Citations (2)

Summary

We haven't generated a summary for this paper yet.