Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Causality and deceit: Do androids watch action movies? (1910.04383v1)

Published 10 Oct 2019 in cs.AI, cs.CY, and math.CT

Abstract: We seek causes through science, religion, and in everyday life. We get excited when a big rock causes a big splash, and we get scared when it tumbles without a cause. But our causal cognition is usually biased. The 'why' is influenced by the 'who'. It is influenced by the 'self', and by 'others'. We share rituals, we watch action movies, and we influence each other to believe in the same causes. Human mind is packed with subjectivity because shared cognitive biases bring us together. But they also make us vulnerable. An artificial mind is deemed to be more objective than the human mind. After many years of science-fiction fantasies about even-minded androids, they are now sold as personal or expert assistants, as brand advocates, as policy or candidate supporters, as network influencers. Artificial agents have been stunningly successful in disseminating artificial causal beliefs among humans. As malicious artificial agents continue to manipulate human cognitive biases, and deceive human communities into ostensive but expansive causal illusions, the hope for defending us has been vested into developing benevolent artificial agents, tasked with preventing and mitigating cognitive distortions inflicted upon us by their malicious cousins. Can the distortions of human causal cognition be corrected on a more solid foundation of artificial causal cognition? In the present paper, we study a simple model of causal cognition, viewed as a quest for causal models. We show that, under very mild and hard to avoid assumptions, there are always self-confirming causal models, which perpetrate self-deception, and seem to preclude a royal road to objectivity.

Summary

We haven't generated a summary for this paper yet.