Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PATSMA: Parameter Auto-tuning for Shared Memory Algorithms (2401.07861v2)

Published 15 Jan 2024 in cs.DC

Abstract: Programs with high levels of complexity often face challenges in adjusting execution parameters, particularly when these parameters vary based on the execution context. These dynamic parameters significantly impact the program's performance, such as loop granularity, which can vary depending on factors like the execution environment, program input, or the choice of compiler. Given the expensive nature of testing each case individually, one viable solution is to automate parameter adjustments using optimization methods. This article introduces PATSMA, a parameter auto-tuning tool that leverages Coupled Simulated Annealing (CSA) and Nelder-Mead (NM) optimization methods to fine-tune existing parameters in an application. We demonstrate how auto-tuning can contribute to the real-time optimization of parallel algorithms designed for shared memory systems. PATSMA is a C++ library readily available under the MIT license.

Citations (1)

Summary

We haven't generated a summary for this paper yet.