Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The border support rank of two-by-two matrix multiplication is seven (1705.09652v1)

Published 26 May 2017 in cs.CC, math.RT, and quant-ph

Abstract: We show that the border support rank of the tensor corresponding to two-by-two matrix multiplication is seven over the complex numbers. We do this by constructing two polynomials that vanish on all complex tensors with format four-by-four-by-four and border rank at most six, but that do not vanish simultaneously on any tensor with the same support as the two-by-two matrix multiplication tensor. This extends the work of Hauenstein, Ikenmeyer, and Landsberg. We also give two proofs that the support rank of the two-by-two matrix multiplication tensor is seven over any field: one proof using a result of De Groote saying that the decomposition of this tensor is unique up to sandwiching, and another proof via the substitution method. These results answer a question asked by Cohn and Umans. Studying the border support rank of the matrix multiplication tensor is relevant for the design of matrix multiplication algorithms, because upper bounds on the border support rank of the matrix multiplication tensor lead to upper bounds on the computational complexity of matrix multiplication, via a construction of Cohn and Umans. Moreover, support rank has applications in quantum communication complexity.

Citations (5)

Summary

We haven't generated a summary for this paper yet.