Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

OpenLDN: Learning to Discover Novel Classes for Open-World Semi-Supervised Learning (2207.02261v2)

Published 5 Jul 2022 in cs.CV and cs.LG

Abstract: Semi-supervised learning (SSL) is one of the dominant approaches to address the annotation bottleneck of supervised learning. Recent SSL methods can effectively leverage a large repository of unlabeled data to improve performance while relying on a small set of labeled data. One common assumption in most SSL methods is that the labeled and unlabeled data are from the same data distribution. However, this is hardly the case in many real-world scenarios, which limits their applicability. In this work, instead, we attempt to solve the challenging open-world SSL problem that does not make such an assumption. In the open-world SSL problem, the objective is to recognize samples of known classes, and simultaneously detect and cluster samples belonging to novel classes present in unlabeled data. This work introduces OpenLDN that utilizes a pairwise similarity loss to discover novel classes. Using a bi-level optimization rule this pairwise similarity loss exploits the information available in the labeled set to implicitly cluster novel class samples, while simultaneously recognizing samples from known classes. After discovering novel classes, OpenLDN transforms the open-world SSL problem into a standard SSL problem to achieve additional performance gains using existing SSL methods. Our extensive experiments demonstrate that OpenLDN outperforms the current state-of-the-art methods on multiple popular classification benchmarks while providing a better accuracy/training time trade-off.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Mamshad Nayeem Rizve (17 papers)
  2. Navid Kardan (7 papers)
  3. Salman Khan (244 papers)
  4. Fahad Shahbaz Khan (225 papers)
  5. Mubarak Shah (208 papers)
Citations (44)

Summary

We haven't generated a summary for this paper yet.