Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On the barcode entropy of Lagrangian submanifolds (2401.07034v1)

Published 13 Jan 2024 in math.DS and math.SG

Abstract: This article deals with relative barcode entropy, a notion that was recently introduced by Cineli, Ginzburg, and Gurel. We exhibit some settings in closed symplectic manifolds for which the relative barcode entropy of a Hamiltonian diffeomorphism and a pair of Lagrangian submanifolds is positive. In analogy to a result in the absolute case by the above authors, we obtain that the topological entropy of any horseshoe K is a lower bound if the two Lagrangians contain a local unstable resp. stable manifold in K. In dimension 2, we also estimate the relative barcode entropy of a pair of closed curves that lie in special homotopy classes in the complement of certain periodic orbits in K. Furthermore, we define a variant of relative barcode entropy and exhibit first examples for which it is positive. As applications, certain robustness features of the volume growth and the topological entropy are discussed.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. Entropy collapse versus entropy rigidity for Reeb and Finsler flows. Selecta Math. (N.S.), 29(5):Paper No. 67, 2023.
  2. Marcelo R.R. Alves. Growth rate of Legendrian contact homology and dynamics of Reeb flows. 2014. Thesis (Ph.D.)–Université Libre de Bruxelles.
  3. Marcelo R.R. Alves. Cylindrical contact homology and topological entropy. Geom. Topol., 20(6):3519–3569, 2016.
  4. Marcelo R.R. Alves. Positive topological entropy for Reeb flows on 3-dimensional Anosov contact manifolds. J. Mod. Dyn., 10:497–509, 2016.
  5. Marcelo R.R. Alves. Legendrian contact homology and topological entropy. J. Topol. Anal., 11(1):53–108, 2019.
  6. Topological entropy for Reeb vector fields in dimension three via open book decompositions. J. Éc. polytech. Math., 6:119–148, 2019.
  7. Dynamically exotic contact spheres of dimensions ≥7absent7\geq 7≥ 7. Comment. Math. Helv., 94(3):569–622, 2019.
  8. Braid stability and the Hofer metric. Ann. Henri Lebesgue, page arXiv:2112.11351 - accepted for publication, 2021.
  9. Reeb orbits that force topological entropy. Ergodic Theory Dynam. Systems, 42(10):3025–3068, 2022.
  10. Lagrangian cobordism. I. J. Amer. Math. Soc., 26(2):295–340, 2013.
  11. Rufus Bowen. Periodic points and measures for Axiom A𝐴Aitalic_A diffeomorphisms. Trans. Amer. Math. Soc., 154:377–397, 1971.
  12. Erman Çineli. A generalized pseudo-rotation with positive topological entropy. Preprint, arXiv:2310.14761, 2023.
  13. Topological entropy of Hamiltonian diffeomorphisms: a persistence homology and Floer theory perspective. Preprint, arXiv:2111.03983, 2021.
  14. Lower semi-continuity of Lagrangian volume. Preprint, arXiv:2210.04357, 2022.
  15. On the growth of the Floer barcode. Preprint, arXiv:2207.03613, 2022.
  16. On the barcode entropy of Reeb flows. Preprint, arXiv:2401.01421, 2024.
  17. Hofer’s geometry and topological entropy. Compos. Math., 159(6):1250–1299, 2023.
  18. Lucas Dahinden. Lower complexity bounds for positive contactomorphisms. Israel J. Math., 224(1):367–383, 2018.
  19. Calabi quasimorphism and quantum homology. Int. Math. Res. Not., (30):1635–1676, 2003.
  20. Barcode entropy for Reeb flows on contact manifolds with Liouville fillings. Preprint, arXiv:2305.04770, 2023.
  21. Andreas Floer. Morse theory for Lagrangian intersections. J. Differential Geom., 28(3):513–547, 1988.
  22. Entropy and exponential growth of π1subscript𝜋1\pi_{1}italic_π start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT in dimension two. Proc. Amer. Math. Soc., 102(3):753–760, 1988.
  23. Volume growth in the component of the Dehn-Seidel twist. Geom. Funct. Anal., 15(4):809–838, 2005.
  24. Fiberwise volume growth via Lagrangian intersections. J. Symplectic Geom., 4(2):117–148, 2006.
  25. Barcode entropy of geodesic flows. Preprint, arXiv:2212.00943, 2022.
  26. Helmut Hofer. On the topological properties of symplectic maps. Proc. Roy. Soc. Edinburgh Sect. A, 115(1-2):25–38, 1990.
  27. Anatole Katok. Lyapunov exponents, entropy and periodic orbits for diffeomorphisms. Inst. Hautes Études Sci. Publ. Math., (51):137–173, 1980.
  28. Introduction to the modern theory of dynamical systems, volume 54 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1995. With a supplementary chapter by Katok and Leonardo Mendoza.
  29. Bounds on spectral norms and barcodes. Geom. Topol., 25(7):3257–3350, 2021.
  30. Felix Klein. Über Riemann’s Theorie der algebraischen Functionen und ihrer Integrale. Teubner, Leipzig, 1882.
  31. Positive topological entropy of Reeb flows on spherizations. Math. Proc. Cambridge Philos. Soc., 151(1):103–128, 2011.
  32. Pierre-Alexandre Mailhot. The spectral diameter of a Liouville domain. Preprint, arXiv:2205.04618, 2022.
  33. Introduction to symplectic topology. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, second edition, 1998.
  34. J𝐽Jitalic_J-holomorphic curves and symplectic topology, volume 52 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, second edition, 2012.
  35. Matthias Meiwes. Rabinowitz Floer homology, leafwise intersections, and topological entropy. PhD thesis, 2018.
  36. Matthias Meiwes. Topological entropy and orbit growth in link complements. Preprint, arxiv:2308.06047, 2023.
  37. Al Momin. Contact homology of orbit complements and implied existence. Journal of Modern Dynamics, 5:409–472, 2010.
  38. Sergey M. Natanzon. Topological classification of pairs of commuting antiholomorphic involutions of Riemann surfaces. Uspekhi Mat. Nauk, 41(5(251)):191–192, 1986.
  39. Sheldon E. Newhouse. Entropy and volume. Ergodic Theory Dynam. Systems, 8*{}^{*}start_FLOATSUPERSCRIPT * end_FLOATSUPERSCRIPT(Charles Conley Memorial Issue):283–299, 1988.
  40. Yong-Geun Oh. Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks. I. Comm. Pure Appl. Math., 46(7):949–993, 1993.
  41. Yong-Geun Oh. Construction of spectral invariants of Hamiltonian paths on closed symplectic manifolds. In The breadth of symplectic and Poisson geometry, volume 232 of Progr. Math., pages 525–570. Birkhäuser Boston, Boston, MA, 2005.
  42. Leonid Polterovich. Growth of maps, distortion in groups and symplectic geometry. Invent. Math., 150(3):655–686, 2002.
  43. Topological persistence in geometry and analysis, volume 74. American Mathematical Soc., 2020.
  44. Autonomous Hamiltonian flows, Hofer’s geometry and persistence modules. Selecta Math., 22(1):227–296, 2016.
  45. A linear isoperimetric inequality for the punctured Euclidean plane. Preprint, arXiv:0106216, 2001.
  46. Matthias Schwarz. On the action spectrum for closed symplectically aspherical manifolds. Pacific J. Math., 193(2):419–461, 2000.
  47. Michael Usher. Hofer’s metrics and boundary depth. Ann. Sci. Éc. Norm. Supér. (4), 46(1):57–128, 2013.
  48. Persistent homology and Floer-Novikov theory. Geom. Topol., 20(6):3333–3430, 2016.
  49. Braid Floer homology. J. Differential Equations, 259(5):1663–1721, 2015.
  50. Claude Viterbo. Symplectic topology as the geometry of generating functions. Math. Ann., 292(4):685–710, 1992.
  51. Yosef Yomdin. Volume growth and entropy. Israel J. Math., 57(3):285–300, 1987.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.