Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Greedy Algorithm for Inference of Decision Trees from Decision Rule Systems (2401.06793v1)

Published 8 Jan 2024 in cs.AI

Abstract: Decision trees and decision rule systems play important roles as classifiers, knowledge representation tools, and algorithms. They are easily interpretable models for data analysis, making them widely used and studied in computer science. Understanding the relationships between these two models is an important task in this field. There are well-known methods for converting decision trees into systems of decision rules. In this paper, we consider the inverse transformation problem, which is not so simple. Instead of constructing an entire decision tree, our study focuses on a greedy polynomial time algorithm that simulates the operation of a decision tree on a given tuple of attribute values.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. Comput. Intell. 32(2), 216–239 (2016)
  2. In: G. Governatori, J. Hall, A. Paschke (eds.) Rule Interchange and Applications, International Symposium, RuleML 2009, Las Vegas, Nevada, USA, November 5-7, 2009. Proceedings, Lecture Notes in Computer Science, vol. 5858, pp. 108–121. Springer (2009)
  3. Springer (2019)
  4. Springer (2020)
  5. In: 28th Annual Symposium on Foundations of Computer Science, Los Angeles, California, USA, 27-29 October 1987, pp. 118–126. IEEE Computer Society (1987)
  6. Math. Program. 79, 163–190 (1997)
  7. IEEE Trans. Knowl. Data Eng. 12(2), 292–306 (2000)
  8. Wadsworth and Brooks (1984)
  9. Theor. Comput. Sci. 288(1), 21–43 (2002)
  10. IEEE Access 8, 218180–218185 (2020)
  11. Springer (2013)
  12. arXiv:2302.07063 [cs.CC] (2023). URL https://doi.org/10.48550/arXiv.2302.07063
  13. arXiv:2305.01721 [cs.AI] (2023). URL https://doi.org/10.48550/arXiv.2305.01721
  14. Cognitive Technologies. Springer (2012)
  15. In: H. Sanjurjo-González, I. Pastor-López, P.G. Bringas, H. Quintián, E. Corchado (eds.) Hybrid Artificial Intelligent Systems - 16th International Conference, HAIS 2021, Bilbao, Spain, September 22-24, 2021, Proceedings, Lecture Notes in Computer Science, vol. 12886, pp. 280–292. Springer (2021)
  16. In: Proceedings of the Second Annual Conference on Structure in Complexity Theory, Cornell University, Ithaca, New York, USA, June 16-19, 1987. IEEE Computer Society (1987)
  17. J. Intell. Inf. Syst. 2(3), 279–304 (1993)
  18. In: H.J. Komorowski, Z.W. Ras (eds.) Methodologies for Intelligent Systems, 7th International Symposium, ISMIS ’93, Trondheim, Norway, June 15-18, 1993, Proceedings, Lecture Notes in Computer Science, vol. 689, pp. 395–404. Springer (1993)
  19. In: Z.W. Ras, M. Michalewicz (eds.) Foundations of Intelligent Systems, 9th International Symposium, ISMIS ’96, Zakopane, Poland, June 9-13, 1996, Proceedings, Lecture Notes in Computer Science, vol. 1079, pp. 428–437. Springer (1996)
  20. In: S. Dzeroski, J. Struyf (eds.) Knowledge Discovery in Inductive Databases, 5th International Workshop, KDID 2006, Berlin, Germany, September 18, 2006, Revised Selected and Invited Papers, Lecture Notes in Computer Science, vol. 4747, pp. 116–133. Springer (2006)
  21. In: Z.W. Ras, M. Zemankova (eds.) Methodologies for Intelligent Systems, 8th International Symposium, ISMIS ’94, Charlotte, North Carolina, USA, October 16-19, 1994, Proceedings, Lecture Notes in Computer Science, vol. 869, pp. 416–426. Springer (1994)
  22. Fundam. Informaticae 31(1), 49–64 (1997)
  23. URL christophm.github.io/interpretable-ml-book/
  24. Moshkov, M.: About the depth of decision trees computing Boolean functions. Fundam. Informaticae 22(3), 203–215 (1995)
  25. Moshkov, M.: Comparative analysis of deterministic and nondeterministic decision tree complexity. Global approach. Fundam. Informaticae 25(2), 201–214 (1996)
  26. Moshkov, M.: Some relationships between decision trees and decision rule systems. In: L. Polkowski, A. Skowron (eds.) Rough Sets and Current Trends in Computing, First International Conference, RSCTC’98, Warsaw, Poland, June 22-26, 1998, Proceedings, Lecture Notes in Computer Science, vol. 1424, pp. 499–505. Springer (1998)
  27. Moshkov, M.: Deterministic and nondeterministic decision trees for rough computing. Fundam. Informaticae 41(3), 301–311 (2000)
  28. Moshkov, M.: On transformation of decision rule systems into decision trees (in Russian). In: Proceedings of the Seventh International Workshop Discrete Mathematics and its Applications, Moscow, Russia, January 29 – February 2, 2001, Part 1, pp. 21–26. Center for Applied Investigations of Faculty of Mathematics and Mechanics, Moscow State University (2001)
  29. Moshkov, M.: Classification of infinite information systems depending on complexity of decision trees and decision rule systems. Fundam. Informaticae 54(4), 345–368 (2003)
  30. Moshkov, M.: Comparative analysis of deterministic and nondeterministic decision tree complexity. Local approach. In: J.F. Peters, A. Skowron (eds.) Trans. Rough Sets IV, Lecture Notes in Computer Science, vol. 3700, pp. 125–143. Springer (2005)
  31. Moshkov, M.: Time complexity of decision trees. In: J.F. Peters, A. Skowron (eds.) Trans. Rough Sets III, Lecture Notes in Computer Science, vol. 3400, pp. 244–459. Springer (2005)
  32. Springer (2008)
  33. Springer (2011)
  34. Kluwer (1991)
  35. Inf. Sci. 177(1), 3–27 (2007)
  36. Quinlan, J.R.: Generating production rules from decision trees. In: J.P. McDermott (ed.) Proceedings of the 10th International Joint Conference on Artificial Intelligence. Milan, Italy, August 23-28, 1987, pp. 304–307. Morgan Kaufmann (1987)
  37. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)
  38. Quinlan, J.R.: Simplifying decision trees. Int. J. Hum. Comput. Stud. 51(2), 497–510 (1999)
  39. World Scientific (2007)
  40. In: S. Chiappa, R. Calandra (eds.) The 23rd International Conference on Artificial Intelligence and Statistics, AISTATS 2020, 26-28 August 2020, Online [Palermo, Sicily, Italy], Proceedings of Machine Learning Research, vol. 108, pp. 1855–1865. PMLR (2020)
  41. In: M.A. Klopotek, S.T. Wierzchon, K. Trojanowski (eds.) Intelligent Information Processing and Web Mining, Proceedings of the International IIS: IIPWM’05 Conference held in Gdansk, Poland, June 13-16, 2005, Advances in Soft Computing, vol. 31, pp. 496–500. Springer (2005)
  42. Comb. 9(4), 385–392 (1989)

Summary

We haven't generated a summary for this paper yet.