Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interval Temporal Logic Decision Tree Learning (2003.04952v2)

Published 10 Mar 2020 in cs.LO

Abstract: Decision trees are simple, yet powerful, classification models used to classify categorical and numerical data, and, despite their simplicity, they are commonly used in operations research and management, as well as in knowledge mining. From a logical point of view, a decision tree can be seen as a structured set of logical rules written in propositional logic. Since knowledge mining is rapidly evolving towards temporal knowledge mining, and since in many cases temporal information is best described by interval temporal logics, propositional logic decision trees may evolve towards interval temporal logic decision trees. In this paper, we define the problem of interval temporal logic decision tree learning, and propose a solution that generalizes classical decision tree learning.

Citations (24)

Summary

We haven't generated a summary for this paper yet.