Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solving the Discretised Multiphase Flow Equations with Interface Capturing on Structured Grids Using Machine Learning Libraries (2401.06755v2)

Published 12 Jan 2024 in physics.flu-dyn and cs.LG

Abstract: This paper solves the discretised multiphase flow equations using tools and methods from machine-learning libraries. The idea comes from the observation that convolutional layers can be used to express a discretisation as a neural network whose weights are determined by the numerical method, rather than by training, and hence, we refer to this approach as Neural Networks for PDEs (NN4PDEs). To solve the discretised multiphase flow equations, a multigrid solver is implemented through a convolutional neural network with a U-Net architecture. Immiscible two-phase flow is modelled by the 3D incompressible Navier-Stokes equations with surface tension and advection of a volume fraction field, which describes the interface between the fluids. A new compressive algebraic volume-of-fluids method is introduced, based on a residual formulation using Petrov-Galerkin for accuracy and designed with NN4PDEs in mind. High-order finite-element based schemes are chosen to model a collapsing water column and a rising bubble. Results compare well with experimental data and other numerical results from the literature, demonstrating that, for the first time, finite element discretisations of multiphase flows can be solved using an approach based on (untrained) convolutional neural networks. A benefit of expressing numerical discretisations as neural networks is that the code can run, without modification, on CPUs, GPUs or the latest accelerators designed especially to run AI codes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (71)
  1. Confronting Grand Challenges in environmental fluid mechanics, Phys. Rev. Fluids 6 (2021) 020501. doi:10.1103/PhysRevFluids.6.020501.
  2. G. F. Hewitt, Multiphase Flow in the Energy Industries, Journal of Engineering Thermophysics 17 (2008) 12–23. doi:10.1007/s11823-008-1002-4.
  3. I. D. Wilson, Y. M. J. Chew, Fluid mechanics in food engineering, Current Opinion in Food Science 51 (2023) 101038. doi:10.1016/j.cofs.2023.101038.
  4. High Resolution Modelling of Traffic Emissions Using the Large Eddy Simulation Code Fluidity, Atmosphere 13 (2022). doi:10.3390/atmos13081203.
  5. Numerical simulation of rock erosion performance of a high-speed water jet using an immersed-body method, International Journal of Rock Mechanics and Mining Sciences 158 (2022) 105179. doi:10.1016/j.ijrmms.2022.105179.
  6. Numerical study of the effect of geometry on the behaviour of internally heated melt pools for in-vessel melt retention, Progress in Nuclear Energy 156 (2023) 104555. doi:10.1016/j.pnucene.2022.104555.
  7. Do we need high temporal resolution modelling of exposure in urban areas? A test case, Science of The Total Environment 885 (2023) 163711. doi:10.1016/j.scitotenv.2023.163711.
  8. W. W. Grabowski, L.-P. Wang, Growth of Cloud Droplets in a Turbulent Environment, Annual Review of Fluid Mechanics 45 (2013) 293–324. doi:10.1146/annurev-fluid-011212-140750.
  9. Computational study of the bubbling-to-slugging transition in a laboratory-scale fluidized bed, Chemical Engineering Journal 308 (2017) 544–556. doi:10.1016/j.cej.2016.08.113.
  10. Gas-Liquid Flow Regime Maps for Horizontal Pipelines: Predicting Flow Regimes Using Dimensionless Parameter Groups, Multiphase Science and Technology 34 (2022) 75–99. doi:10.1615/MultScienTechn.2022043690.
  11. Multiphase porous media modelling: A novel approach to predicting food processing performance, Critical Reviews in Food Science and Nutrition 58 (2018) 528–546. doi:10.1080/10408398.2016.1197881.
  12. A two-phase mixing layer between parallel gas and liquid streams: multiphase turbulence statistics and influence of interfacial instability, Journal of Fluid Mechanics 859 (2018) 268–307. doi:10.1017/jfm.2018.825.
  13. Immersed boundary methods for fluid interfaces, in: A. Prosperetti, G. Tryggvason (Eds.), Computational Methods for Multiphase Flow, Cambridge University Press, 2007, pp. 37–77. doi:10.1017/CBO9780511607486.004.
  14. R. Reddy, R. Banerjee, GPU accelerated VOF based multiphase flow solver and its application to sprays, Computers & Fluids 117 (2015) 287–303. doi:10.1016/j.compfluid.2015.05.013.
  15. Interface-capturing methods for two-phase flows: an overview and recent developments, Insights into Imaging Center for Turbulence Research: Annual Research Briefs (2017) 117–135.
  16. M. F. P. ten Eikelder, I. Akkerman, A novel diffuse-interface model and a fully-discrete maximum-principle-preserving energy-stable method for two-phase flow with surface tension and non-matching densities, Computer Methods in Applied Mechanics and Engineering 379 (2021) 113751. doi:10.1016/j.cma.2021.113751.
  17. FluTAS: A GPU-accelerated finite difference code for multiphase flows, Computer Physics Communications 284 (2023) 108602. doi:10.1016/j.cpc.2022.108602.
  18. A solver for massively parallel direct numerical simulation of three-dimensional multiphase flows, Journal of Mechanical Science and Technology 31 (2017) 1739–1751. doi:10.1007/s12206-017-0322-y.
  19. A hybrid interface tracking — level set technique for multiphase flow with soluble surfactant, Journal of Computational Physics 359 (2018) 409–435. doi:10.1016/j.jcp.2018.01.010.
  20. W. J. Rider, D. B. Kothe, Reconstructing Volume Tracking, Journal of Computational Physics 141 (1998) 112–152. doi:10.1006/jcph.1998.5906.
  21. R. Scardovelli, S. Zaleski, Direct Numerical Simulation of Free-Surface and Interfacial Flow, Annual Review of Fluid Mechanics 31 (1999) 567–603. doi:10.1146/annurev.fluid.31.1.567.
  22. J. Chessa, T. Belytschko, An enriched finite element method and level sets for axisymmetric two-phase flow with surface tension, International Journal for Numerical Methods in Engineering 58 (2003) 2041–2064. doi:10.1002/nme.946.
  23. S. Claus, P. Kerfriden, A CutFEM method for two-phase flow problems, Computer Methods in Applied Mechanics and Engineering 348 (2019) 185–206. doi:10.1016/j.cma.2019.01.009.
  24. A cartesian cut-cell based multiphase flow model for large-eddy simulation of three-dimensional wave-structure interaction, Computers & Fluids 213 (2020) 104747. doi:10.1016/j.compfluid.2020.104747.
  25. Diffuse-interface methods in fluid mechanics, Annual Review of Fluid Mechanics 30 (1998) 139–165. doi:10.1146/annurev.fluid.30.1.139.
  26. Sharp interface models for two-phase flows: Insights towards new approaches, Computer Methods in Applied Mechanics and Engineering 322 (2017) 238–261. doi:10.1016/j.cma.2017.04.022.
  27. Robust control volume finite element methods for numerical wave tanks using extreme adaptive anisotropic meshes, International Journal for Numerical Methods in Fluids 92 (2020) 1707–1722. doi:10.1002/fld.4845.
  28. A diffuse interface model for two-phase ferrofluid flows, Computer Methods in Applied Mechanics and Engineering 309 (2016) 497–531. doi:10.1016/j.cma.2016.06.011.
  29. S. Elgeti, H. Sauerland, Deforming Fluid Domains Within the Finite Element Method: Five Mesh-Based Tracking Methods in Comparison, Archives of Computational Methods in Engineering 23 (2016) 323–361. doi:10.1007/s11831-015-9143-2.
  30. Two- and three-phase horizontal slug flow simulations using an interface-capturing compositional approach, International Journal of Multiphase Flow 67 (2014) 85–91. doi:10.1016/j.ijmultiphaseflow.2014.07.007.
  31. Compressive advection and multi-component methods for interface-capturing, International Journal for Numerical Methods in Fluids 80 (2016) 256–282. doi:10.1002/fld.4078.
  32. Prediction of multiphase flows with sharp interfaces using anisotropic mesh optimisation, Advances in Engineering Software 160 (2021) 103044. doi:10.1016/j.advengsoft.2021.103044.
  33. Benchmarking of state-of-the-art HPC Clusters with a Production CFD Code, in: PASC 20: Proceedings of the Platform for Advanced Scientific Computing Conference, 2020, pp. 88–92. doi:10.1145/3394277.3401847.
  34. K. E. Niemeyer, C. J. Sung, Recent progress and challenges in exploiting graphics processors in computational fluid dynamics, J Supercomput 67 (2014) 528–564. doi:10.1007/s11227-013-1015-7.
  35. Parallelization Strategies for Computational Fluid Dynamics Software: State of the Art Review, Arch Computat Methods Eng 24 (2017) 337–363. doi:10.1007/s11831-016-9165-4.
  36. Benchmarking OpenCL, OpenACC, OpenMP, and CUDA: Programming Productivity, Performance, and Energy Consumption, in: Proceedings of the 2017 Workshop on Adaptive Resource Management and Scheduling for Cloud Computing, ARMS-CC ’17, Association for Computing Machinery, New York, NY, USA, 2017, pp. 1–6. doi:10.1145/3110355.3110356.
  37. NAS Parallel Benchmarks with CUDA and beyond, Software: Practice and Experience 53 (2023) 53–80. doi:10.1002/spe.3056.
  38. Hybrid MPI and CUDA Parallelization for CFD Applications on Multi-GPU HPC Clusters, Sci. Program. 2020 (2020). doi:10.1155/2020/8862123.
  39. A dynamic load balancing algorithm for CFD–DEM simulation with CPU-GPU heterogeneous computing, Powder Technology 428 (2023) 118782. doi:10.1016/j.powtec.2023.118782.
  40. J. Appleyard, D. Drikakis, Higher-order CFD and interface tracking methods on highly-parallel MPI and GPU systems, Computer & Fluids 46 (2011) 101–105. doi:10.1016/j.compfluid.2010.10.019.
  41. Using Graphics Processing Units to Accelerate Numerical Simulations of Interfacial Incompressible Flows, in: ASME 2012 Fluids Engineering Division Summer Meeting, volume 1: Symposia, Parts A and B of Fluids Engineering Division Summer Meeting, 2012, pp. 625–634. doi:10.1115/FEDSM2012-72176.
  42. M. Griebel, P. Zaspel, A multi-GPU accelerated solver for the three-dimensional two-phase incompressible Navier-Stokes equations, Computer Science — Research and Development 25 (2010) 65–73. doi:10.1007/s00450-010-0111-7.
  43. MFC: An open-source high-order multi-component, multi-phase, and multi-scale compressible flow solver, Computer Physics Communications 266 (2021) 107396. doi:10.1016/j.cpc.2020.107396.
  44. Method for portable, scalable, and performant GPU-accelerated simulation of multiphase compressible flow, arXiv preprint 2305.09163 (2023). doi:10.48550/arXiv.2305.09163.
  45. A TensorFlow-based new high-performance computational framework for CFD, Journal of Hydrodynamics 32 (2020) 735–746. doi:10.1007/s42241-020-0050-0.
  46. A TensorFlow simulation framework for scientific computing of fluid flows on tensor processing units, Computer Physics Communications 274 (2022) 108292. doi:10.1016/j.cpc.2022.108292.
  47. Using AI libraries for Incompressible Computational Fluid Dynamics, in preparation (2023).
  48. Solving the discretised neutron diffusion equations using neural networks, International Journal for Numerical Methods in Engineering 124 (2023a) 4659–4686. doi:10.1002/nme.7321.
  49. Solving the Discretised Boltzmann Transport Equations using Neural Networks: Applications in Neutron Transport, arXiv preprint (2023b) 2301.09991. doi:10.48550/arXiv.2301.09991.
  50. Image Restoration: Wavelet Frame Shrinkage, Nonlinear Evolution PDEs, and Beyond, Multiscale Modeling & Simulation 15 (2017) 606–660. doi:10.1137/15M1037457.
  51. PDE-Net: Learning PDEs from Data, in: J. Dy, A. Krause (Eds.), Proceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, PMLR, 2018, pp. 3208–3216.
  52. Convolutional neural networks: an overview and application in radiology, Insights into Imaging 9 (2018) 611–629. doi:10.1007/s13244-018-0639-9.
  53. Conceptual Understanding of Convolutional Neural Network- A Deep Learning Approach, Procedia Computer Science 132 (2018) 679–688. doi:10.1016/j.procs.2018.05.069.
  54. U-Net: Convolutional Networks for Biomedical Image Segmentation, in: Medical Image Computing and Computer-Assisted Intervention (MICCAI), volume 9351 of LNCS, Springer, 2015, pp. 234–241. doi:10.48550/arXiv.1505.04597.
  55. Development of an equation-based parallelization method for multiphase particle-in-cell simulations, Engineering with Computers 39 (2023) 3577–3591. doi:10.1007/s00366-022-01768-6.
  56. PyTorch: An Imperative Style, High-Performance Deep Learning Library, in: H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, R. Garnett (Eds.), Advances in Neural Information Processing Systems, volume 32, Curran Associates, Inc., 2019. URL: https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.
  57. Compiling machine learning programs via high-level tracing, 2018. URL: https://mlsys.org/Conferences/doc/2018/146.pdf.
  58. Kokkos: Enabling manycore performance portability through polymorphic memory access patterns, Journal of Parallel and Distributed Computing 74 (2014) 3202–3216. doi:10.1016/j.jpdc.2014.07.003.
  59. Performance portability of lattice Boltzmann methods for two-phase flows with phase change, Computer Methods in Applied Mechanics and Engineering 370 (2020) 113266. doi:10.1016/j.cma.2020.113266.
  60. Next Generation Exascale Capable Mutliphase Solver With Trilinos, in: Proceedings of the ASME 2016 International Mechanical Engineering Congress & Exposition, volume Volume 14: Emerging Technologies; Materials: Genetics to Structures; Safety Engineering and Risk Analysis, 2016, p. V014T07A025. doi:10.1115/IMECE2016-67962.
  61. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, Journal of Computational Physics 378 (2019) 686–707. doi:10.1016/j.jcp.2018.10.045.
  62. Inferring incompressible two-phase flow fields from the interface motion using physics-informed neural networks, Machine Learning with Applications 4 (2021) 100029. doi:10.1016/j.mlwa.2021.100029.
  63. Automatic Differentiation in ML: Where We Are and Where We Should Be Going, in: Proceedings of the 32nd International Conference on Neural Information Processing Systems, Curran Associates Inc., Red Hook, NY, USA, 2018, pp. 8771–8781.
  64. Automatic differentiation in machine learning: A survey, Journal of Machine Learning Research 18 (2018) 1–43.
  65. Y. Li, et al., An AI-based Integrated Framework for Anisotropic Electrical Resistivity Imaging, in preparation (2024).
  66. A front-tracking method for two-phase flow simulation with no spurious currents, Journal of Computational Physics 456 (2022) 111006. doi:10.1016/j.jcp.2022.111006.
  67. R. Codina, A discontinuity-capturing crosswind-dissipation for the finite element solution of the convection-diffusion equation, Computer Methods in Applied Mechanics and Engineering 110 (1993) 325–342. doi:10.1016/0045-7825(93)90213-H.
  68. P. Hansbo, C. Johnson, Adaptive streamline diffusion methods for compressible flow using conservation variables, Computer Methods in Applied Mechanics and Engineering 87 (1991) 267–280. doi:https://doi.org/10.1016/0045-7825(91)90008-T.
  69. G. H. Yeoh, T. Barber, Assessment of interface capturing methods in Computational Fluid Dynamics (CFD) codes—A case study, The Journal of Computational Multiphase Flows 1 (2009) 201–215. doi:10.1260/175748209789563946.
  70. Part IV. An experimental study of the collapse of liquid columns on a rigid horizontal plane, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 244 (1952) 312–324. doi:10.1098/rsta.1952.0006.
  71. P. Duineveld, The rise velocity and shape of bubbles in pure water at high Reynolds number, Journal of Fluid Mechanics 292 (1995) 325–332. doi:10.1017/S0022112095001546.
Citations (6)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets