Graph Representation Learning for Parameter Transferability in Quantum Approximate Optimization Algorithm (2401.06655v2)
Abstract: The quantum approximate optimization algorithm (QAOA) is one of the most promising candidates for achieving quantum advantage through quantum-enhanced combinatorial optimization. Optimal QAOA parameter concentration effects for special MaxCut problem instances have been observed, but a rigorous study of the subject is still lacking. Due to clustering of optimal QAOA parameters for MaxCut, successful parameter transferability between different MaxCut instances can be explained and predicted based on local properties of the graphs, including the type of subgraphs (lightcones) from which graphs are composed as well as the overall degree of nodes in the graph (parity). In this work, we apply five different graph embedding techniques to determine good donor candidates for parameter transferability, including parameter transferability between different classes of MaxCut instances. Using this technique, we effectively reduce the number of iterations required for parameter optimization, obtaining an approximate solution to the target problem with an order of magnitude speedup. This procedure also effectively removes the problem of encountering barren plateaus during the variational optimization of parameters. Additionally, our findings demonstrate that the transferred parameters maintain effectiveness when subjected to noise, supporting their use in real-world quantum applications. This work presents a framework for identifying classes of combinatorial optimization instances for which optimal donor candidates can be predicted such that QAOA can be substantially accelerated under both ideal and noisy conditions.
- John Preskill. Quantum computing in the nisq era and beyond. Quantum, 2:79, August 2018. ISSN 2521-327X. doi:10.22331/q-2018-08-06-79. URL http://arxiv.org/abs/1801.00862. arXiv: 1801.00862.
- Quantum supremacy using a programmable superconducting processor. Nature, 574(7779):505–510, October 2019. ISSN 0028-0836, 1476-4687. doi:10.1038/s41586-019-1666-5. URL http://www.nature.com/articles/s41586-019-1666-5.
- Quantum computer systems for scientific discovery. PRX Quantum, 2(1), February 2021. doi:10.1103/prxquantum.2.017001.
- Quantum computing for finance. Nature Reviews Physics, 5(8):450–465, 2023.
- The prospects of quantum computing in computational molecular biology. Wiley Interdisciplinary Reviews: Computational Molecular Science, 11(1):e1481, 2021.
- Quantum computing for fusion energy science applications. Physics of Plasmas, 30(1), 2023.
- A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028, 2014.
- Network community detection on small quantum computers. Advanced Quantum Technologies, 2(9):1900029, 2019a.
- Multilevel combinatorial optimization across quantum architectures. ACM Transactions on Quantum Computing, 2(1):1–29, 2021.
- Similarity-based parameter transferability in the quantum approximate optimization algorithm. Front. Quantum. Sci. Technol., 2:1200975, July 2023. ISSN 2813-2181. doi:10.3389/frqst.2023.1200975. URL https://www.frontiersin.org/articles/10.3389/frqst.2023.1200975/full.
- LLC Gurobi Optimization. Gurobi optimizer reference manual, 2021. URL http://www.gurobi.com.
- Collective dynamics of ‘small-world’ networks. Nature, 393(6684):440–442, June 1998. doi:10.1038/30918.
- Gerhard J. Woeginger. Combinatorial approximation algorithms: a comparative review. Operations Research Letters, 33(2):210–215, 2005. ISSN 0167-6377. doi:https://doi.org/10.1016/j.orl.2004.03.010. URL https://www.sciencedirect.com/science/article/pii/S0167637704000811.
- MaxCut quantum approximate optimization algorithm performance guarantees for p > 1. Phys. Rev. A, 103(4):042612, April 2021. ISSN 2469-9926, 2469-9934. doi:10.1103/PhysRevA.103.042612. URL https://link.aps.org/doi/10.1103/PhysRevA.103.042612.
- A Comprehensive Survey of Graph Embedding: Problems, Techniques, and Applications. IEEE Transactions on Knowledge and Data Engineering, 30(9):1616–1637, September 2018. ISSN 1041-4347, 1558-2191, 2326-3865. doi:10.1109/TKDE.2018.2807452. URL https://ieeexplore.ieee.org/document/8294302/.
- Graph Embedding Techniques, Applications, and Performance: A Survey. Knowledge-Based Systems, 151:78–94, July 2018. ISSN 09507051. doi:10.1016/j.knosys.2018.03.022. URL http://arxiv.org/abs/1705.02801. arXiv:1705.02801 [physics].
- Fobe and hobe: First-and high-order bipartite embeddings. ACM KDD 2020 Workshop on Mining and Learning with Graphs, preprint arXiv:1905.10953, 2020.
- Unsupervised hierarchical graph representation learning by mutual information maximization. ACM KDD 2020 Workshop on Mining and Learning with Graphs, preprint arXiv:2003.08420, 2020.
- Fast Sequence-Based Embedding with Diffusion Graphs, January 2020a. URL http://arxiv.org/abs/2001.07463. arXiv:2001.07463 [cs, stat].
- NodeSketch: Highly-Efficient Graph Embeddings via Recursive Sketching. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 1162–1172, Anchorage AK USA, July 2019. ACM. ISBN 978-1-4503-6201-6. doi:10.1145/3292500.3330951. URL https://dl.acm.org/doi/10.1145/3292500.3330951.
- node2vec: Scalable Feature Learning for Networks, July 2016. URL http://arxiv.org/abs/1607.00653. arXiv:1607.00653 [cs, stat].
- Graph Embedding via Diffusion-Wavelets-Based Node Feature Distribution Characterization. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pages 3478–3482, Virtual Event Queensland Australia, October 2021a. ACM. ISBN 978-1-4503-8446-9. doi:10.1145/3459637.3482115. URL https://dl.acm.org/doi/10.1145/3459637.3482115.
- A simple yet effective baseline for non-attributed graph classification, May 2022. URL http://arxiv.org/abs/1811.03508. arXiv:1811.03508 [cs, stat].
- Invariant embedding for graph classification. In ICML 2019 Workshop on Learning and Reasoning with Graph-Structured Data, 2019.
- graph2vec: Learning Distributed Representations of Graphs, July 2017. URL http://arxiv.org/abs/1707.05005. arXiv:1707.05005 [cs].
- Nino Shervashidze. Weisfeiler-Lehman Graph Kernels. Journal of Machine Learning Research, 2011.
- On graph kernels: Hardness results and efficient alternatives. In Bernhard Schölkopf and Manfred K. Warmuth, editors, Learning Theory and Kernel Machines, pages 129–143, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg. ISBN 978-3-540-45167-9.
- K.M. Borgwardt and H. Kriegel. Shortest-Path Kernels on Graphs. In Fifth IEEE International Conference on Data Mining (ICDM’05), pages 74–81, Houston, TX, USA, 2005. IEEE. ISBN 978-0-7695-2278-4. doi:10.1109/ICDM.2005.132. URL http://ieeexplore.ieee.org/document/1565664/.
- Deep Graph Kernels. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1365–1374, Sydney NSW Australia, August 2015. ACM. ISBN 978-1-4503-3664-2. doi:10.1145/2783258.2783417. URL https://dl.acm.org/doi/10.1145/2783258.2783417.
- Distributed representations of sentences and documents. In Eric P. Xing and Tony Jebara, editors, Proceedings of the 31st International Conference on Machine Learning, volume 32 of Proceedings of Machine Learning Research, pages 1188–1196, Bejing, China, 22–24 Jun 2014. PMLR. URL https://proceedings.mlr.press/v32/le14.html.
- Gl2vec: Graph embedding enriched by line graphs with edge features. In Tom Gedeon, Kok Wai Wong, and Minho Lee, editors, Neural Information Processing, pages 3–14, Cham, 2019. Springer International Publishing. ISBN 978-3-030-36718-3.
- A Simple Baseline Algorithm for Graph Classification, November 2018. URL http://arxiv.org/abs/1810.09155. arXiv:1810.09155 [cs, stat].
- Netlsd: Hearing the shape of a graph. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’18, page 2347–2356, New York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450355520. doi:10.1145/3219819.3219991. URL https://doi.org/10.1145/3219819.3219991.
- Hunt for the unique, stable, sparse and fast feature learning on graphs. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/d2ddea18f00665ce8623e36bd4e3c7c5-Paper.pdf.
- Geometric Scattering for Graph Data Analysis. In Proceeding of the 36th International Conference on Machine Learning, 2019.
- Characteristic Functions on Graphs: Birds of a Feather, from Statistical Descriptors to Parametric Models, August 2020b. URL http://arxiv.org/abs/2005.07959. arXiv:2005.07959 [cs, stat].
- Beyond Barren Plateaus: Quantum Variational Algorithms Are Swamped With Traps. Nature Communications, 13(1):7760, December 2022. ISSN 2041-1723. doi:10.1038/s41467-022-35364-5. URL http://arxiv.org/abs/2205.05786. arXiv:2205.05786 [quant-ph].
- Noise-induced barren plateaus in variational quantum algorithms. Nature Communications, 12(1):6961, November 2021b. ISSN 2041-1723. doi:10.1038/s41467-021-27045-6. URL https://www.nature.com/articles/s41467-021-27045-6.
- Evaluating quantum approximate optimization algorithm: A case study. In 2019 Tenth International Green and Sustainable Computing Conference (IGSC), pages 1–6, 2019. doi:10.1109/IGSC48788.2019.8957201.
- Warm-starting quantum optimization, 2020.
- Multistart methods for quantum approximate optimization. In 2019 IEEE High Performance Extreme Computing Conference (HPEC), pages 1–8. IEEE, 2019b.
- A hybrid approach for solving optimization problems on small quantum computers. Computer, 52(6):18–26, 2019c.
- Classical symmetries and the quantum approximate optimization algorithm. Quantum Information Processing, 20:1–28, 2021.
- Learning to optimize variational quantum circuits to solve combinatorial problems. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 2367–2375, 2020.
- Transferability of optimal qaoa parameters between random graphs. In 2021 IEEE International Conference on Quantum Computing and Engineering (QCE), pages 171–180. IEEE, 2021.
- For fixed control parameters the quantum approximate optimization algorithm’s objective function value concentrates for typical instances. arXiv preprint arXiv:1812.04170, 2018.
- Training the quantum approximate optimization algorithm without access to a quantum processing unit. Quantum Science and Technology, 5(3):034008, 2020.
- Parameter concentration in quantum approximate optimization. arXiv preprint arXiv:2103.11976, 2021.
- Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs. In Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM ’20), page 3125–3132. ACM, 2020.
- Qtensor. https://github.com/danlkv/qtensor, 2021.
- Quantum Machine Learning Tensor Network States. Frontiers in Physics, 8:586374, March 2021. ISSN 2296-424X. doi:10.3389/fphy.2020.586374. URL https://www.frontiersin.org/articles/10.3389/fphy.2020.586374/full.
- Tensor Networks in a Nutshell, July 2017. URL http://arxiv.org/abs/1708.00006.
- Elruna: Elimination rule-based network alignment. ACM J. Exp. Algorithmics, 26, jul 2021. ISSN 1084-6654. doi:10.1145/3450703. URL https://doi.org/10.1145/3450703.
- Quantum error mitigation, 2023.
- Quantum approximate optimization algorithm with sparsified phase operator. In 2022 IEEE International Conference on Quantum Computing and Engineering (QCE), pages 133–141. IEEE, 2022.
- Of representation theory and quantum approximate optimization algorithm. arXiv preprint arXiv:2309.13787, 2023.
- Beinit: Avoiding barren plateaus in variational quantum algorithms. In 2022 IEEE International Conference on Quantum Computing and Engineering (QCE), pages 197–203. IEEE, 2022.