Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised strategies for identifying optimal parameters in Quantum Approximate Optimization Algorithm (2202.09408v2)

Published 18 Feb 2022 in quant-ph

Abstract: As combinatorial optimization is one of the main quantum computing applications, many methods based on parameterized quantum circuits are being developed. In general, a set of parameters are being tweaked to optimize a cost function out of the quantum circuit output. One of these algorithms, the Quantum Approximate Optimization Algorithm stands out as a promising approach to tackling combinatorial problems. However, finding the appropriate parameters is a difficult task. Although QAOA exhibits concentration properties, they can depend on instances characteristics that may not be easy to identify, but may nonetheless offer useful information to find good parameters. In this work, we study unsupervised Machine Learning approaches for setting these parameters without optimization. We perform clustering with the angle values but also instances encodings (using instance features or the output of a variational graph autoencoder), and compare different approaches. These angle-finding strategies can be used to reduce calls to quantum circuits when leveraging QAOA as a subroutine. We showcase them within Recursive-QAOA up to depth $3$ where the number of QAOA parameters used per iteration is limited to $3$, achieving a median approximation ratio of $0.94$ for MaxCut over $200$ Erd\H{o}s-R\'{e}nyi graphs. We obtain similar performances to the case where we extensively optimize the angles, hence saving numerous circuit calls.

Summary

We haven't generated a summary for this paper yet.