Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Crowd Behaviors in Navigation with Attention-based Spatial-Temporal Graphs (2401.06226v1)

Published 11 Jan 2024 in cs.RO

Abstract: Safe and efficient navigation in dynamic environments shared with humans remains an open and challenging task for mobile robots. Previous works have shown the efficacy of using reinforcement learning frameworks to train policies for efficient navigation. However, their performance deteriorates when crowd configurations change, i.e. become larger or more complex. Thus, it is crucial to fully understand the complex, dynamic, and sophisticated interactions of the crowd resulting in proactive and foresighted behaviors for robot navigation. In this paper, a novel deep graph learning architecture based on attention mechanisms is proposed, which leverages the spatial-temporal graph to enhance robot navigation. We employ spatial graphs to capture the current spatial interactions, and through the integration with RNN, the temporal graphs utilize past trajectory information to infer the future intentions of each agent. The spatial-temporal graph reasoning ability allows the robot to better understand and interpret the relationships between agents over time and space, thereby making more informed decisions. Compared to previous state-of-the-art methods, our method demonstrates superior robustness in terms of safety, efficiency, and generalization in various challenging scenarios.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. C. Mavrogiannis, F. Baldini, A. Wang, D. Zhao, P. Trautman, A. Steinfeld, and J. Oh, “Core challenges of social robot navigation: A survey,” arXiv preprint arXiv:2103.05668, 2021.
  2. R. Möller, A. Furnari, S. Battiato, A. Härmä, and G. M. Farinella, “A survey on human-aware robot navigation,” Robotics and Autonomous Systems, vol. 145, p. 103837, 2021.
  3. X. Xiao, B. Liu, G. Warnell, and P. Stone, “Motion planning and control for mobile robot navigation using machine learning: a survey,” Autonomous Robots, vol. 46, no. 5, pp. 569–597, 2022.
  4. J. Van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity obstacles for real-time multi-agent navigation,” in 2008 IEEE ICRA, 2008, pp. 1928–1935.
  5. J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal n-body collision avoidance,” in Robotics Research: The 14th International Symposium ISRR.   Springer, 2011, pp. 3–19.
  6. G. Ferrer, A. Garrell, and A. Sanfeliu, “Social-aware robot navigation in urban environments,” in 2013 European Conference on Mobile Robots, 2013, pp. 331–336.
  7. G. Ferrer, A. G. Zulueta, F. H. Cotarelo, and A. Sanfeliu, “Robot social-aware navigation framework to accompany people walking side-by-side,” Autonomous robots, vol. 41, no. 4, pp. 775–793, 2017.
  8. X.-T. Truong and T. D. Ngo, “Toward socially aware robot navigation in dynamic and crowded environments: A proactive social motion model,” IEEE Transactions on Automation Science and Engineering, vol. 14, no. 4, pp. 1743–1760, 2017.
  9. K. Li, M. Shan, K. Narula, S. Worrall, and E. Nebot, “Socially aware crowd navigation with multimodal pedestrian trajectory prediction for autonomous vehicles,” in 2020 IEEE ITSC, 2020, pp. 1–8.
  10. G. S. Aoude, B. D. Luders, J. M. Joseph, N. Roy, and J. P. How, “Probabilistically safe motion planning to avoid dynamic obstacles with uncertain motion patterns,” Autonomous Robots, vol. 35, no. 1, pp. 51–76, 2013.
  11. Y. Chen, F. Zhao, and Y. Lou, “Interactive model predictive control for robot navigation in dense crowds,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 52, no. 4, pp. 2289–2301, 2021.
  12. P. Trautman and A. Krause, “Unfreezing the robot: Navigation in dense, interacting crowds,” in IEEE/RSJ IROS, 2010, pp. 797–803.
  13. A. J. Sathyamoorthy, U. Patel, T. Guan, and D. Manocha, “Frozone: Freezing-free, pedestrian-friendly navigation in human crowds,” IEEE Robotics and Automation Letters, vol. 5, no. 3, pp. 4352–4359, 2020.
  14. Y. Li, “Deep reinforcement learning: An overview,” arXiv preprint arXiv:1701.07274, 2017.
  15. K. Zhu and T. Zhang, “Deep reinforcement learning based mobile robot navigation: A review,” Tsinghua Science and Technology, vol. 26, no. 5, pp. 674–691, 2021.
  16. W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-to-real transfer in deep reinforcement learning for robotics: A survey,” in 2020 IEEE Symp. Series on Comput. Intelligence (SSCI), 2020, pp. 737–744.
  17. R. Wang, W. Wang, and B.-C. Min, “Feedback-efficient active preference learning for socially aware robot navigation,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2022, pp. 11 336–11 343.
  18. S. S. Samsani, H. Mutahira, and M. S. Muhammad, “Memory-based crowd-aware robot navigation using deep reinforcement learning,” Complex & Intelligent Systems, vol. 9, no. 2, pp. 2147–2158, 2023.
  19. H. Zeng, R. Hu, X. Huang, and Z. Peng, “Robot navigation in crowd based on dual social attention deep reinforcement learning,” Mathematical Problems in Engineering, vol. 2021, pp. 1–11, 2021.
  20. A. Graves and A. Graves, “Long short-term memory,” Supervised sequence labelling with recurrent neural networks, pp. 37–45, 2012.
  21. L. R. Medsker and L. Jain, “Recurrent neural networks,” Design and Applications, vol. 5, pp. 64–67, 2001.
  22. C. Chen, Y. Liu, S. Kreiss, and A. Alahi, “Crowd-robot interaction: Crowd-aware robot navigation with attention-based deep reinforcement learning,” in 2019 IEEE ICRA, 2019, pp. 6015–6022.
  23. S. Liu, P. Chang, W. Liang, N. Chakraborty, and K. Driggs-Campbell, “Decentralized structural-rnn for robot crowd navigation with deep reinforcement learning,” in 2021 IEEE ICRA, 2021, pp. 3517–3524.
  24. Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware motion planning with deep reinforcement learning,” in 2017 IEEE/RSJ IROS, 2017, pp. 1343–1350.
  25. W. Wang, R. Wang, L. Mao, and B.-C. Min, “Navistar: Socially aware robot navigation with hybrid spatio-temporal graph transformer and preference learning,” arXiv preprint arXiv:2304.05979, 2023.
  26. S. Wang, R. Gao, R. Han, S. Chen, C. Li, and Q. Hao, “Adaptive environment modeling based reinforcement learning for collision avoidance in complex scenes,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2022, pp. 9011–9018.
  27. H. He, H. Fu, Q. Wang, S. Zhou, and W. Liu, “Spatio-temporal transformer-based reinforcement learning for robot crowd navigation,” arXiv preprint arXiv:2305.16612, 2023.
  28. C. Chen, S. Hu, P. Nikdel, G. Mori, and M. Savva, “Relational graph learning for crowd navigation,” in IROS, 2020, pp. 10 007–10 013.
  29. Y. Chen, C. Liu, B. E. Shi, and M. Liu, “Robot navigation in crowds by graph convolutional networks with attention learned from human gaze,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 2754–2761, 2020.
  30. Y. Chen, C. Liu, X. Mei, B. E. Shi, and M. Liu, “HGCN-GJS: Hierarchical graph convolutional network with groupwise joint sampling for trajectory prediction,” in IEEE/RSJ IROS, 2022, pp. 13 400–13 405.
  31. Z. Zhou, Z. Zeng, L. Lang, W. Yao, H. Lu, Z. Zheng, and Z. Zhou, “Navigating robots in dynamic environment with deep reinforcement learning,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 12, pp. 25 201–25 211, 2022.
  32. S. Liu, P. Chang, Z. Huang, N. Chakraborty, W. Liang, J. Geng, and K. Driggs-Campbell, “Socially aware robot crowd navigation with interaction graphs and human trajectory prediction,” arXiv preprint arXiv:2203.01821, 2022.
  33. T. Zhang, T. Qiu, Z. Pu, Z. Liu, and J. Yi, “Robot navigation among external autonomous agents through deep reinforcement learning using graph attention network,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 9465–9470, 2020.
  34. Z. Zhou, P. Zhu, Z. Zeng, J. Xiao, H. Lu, and Z. Zhou, “Robot navigation in a crowd by integrating deep reinforcement learning and online planning,” Applied Intelligence, pp. 1–17, 2022.
  35. T. Zhang, Z. Liu, Z. Pu, J. Yi, Y. Liang, and D. Zhang, “Robot subgoal-guided navigation in dynamic crowded environments with hierarchical deep reinforcement learning,” International Journal of Control, Automation and Systems, pp. 1–13, 2023.
  36. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Yanying Zhou (3 papers)
  2. Jochen Garcke (22 papers)
Citations (3)