Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Recognition Complexity of Subgraphs of k-Connected Planar Cubic Graphs (2401.05892v2)

Published 11 Jan 2024 in cs.DM and math.CO

Abstract: We study the recognition complexity of subgraphs of k-connected planar cubic graphs for k = 1, 2, 3. We present polynomial-time algorithms to recognize subgraphs of 1- and 2-connected planar cubic graphs, both in the variable and fixed embedding setting. The main tools involve the Generalized (Anti)factor-problem for the fixed embedding case, and SPQR-trees for the variable embedding case. Secondly, we prove NP-hardness of recognizing subgraphs of 3-connected planar cubic graphs in the variable embedding setting.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (6)
  1. Gérard Cornuéjols. General Factors of Graphs. Journal of Combinatorial Theory, Series B, 45(2):185–198, 1988. doi:10.1016/0095-8956(88)90068-8.
  2. Optimal Binary Space Partitions in the Plane. In My T. Thai and Sartaj Sahni, editors, Computing and Combinatorics (COCOON 2010), volume 6196 of Lecture Notes in Computer Science, pages 216–225, 2010. doi:10.1007/978-3-642-14031-0_25.
  3. Efficient Recognition of Subgraphs of Planar Cubic Bridgeless Graphs. In Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman, editors, 30th Annual European Symposium on Algorithms (ESA 2022), volume 244 of Leibniz International Proceedings in Informatics (LIPIcs), pages 62:1–62:15, 2022. doi:10.4230/LIPIcs.ESA.2022.62.
  4. Regular augmentation of planar graphs. Algorithmica, 73(2):306–370, 2015. doi:10.1007/s00453-014-9922-4.
  5. László Lovász. The Factorization of Graphs. II. Acta Mathematica Academiae Scientiarum Hungarica, 23(1–2):223–246, 1972. doi:10.1007/BF01889919.
  6. András Sebő. General Antifactors of Graphs. Journal of Combinatorial Theory, Series B, 58(2):174–184, 1993. doi:10.1006/jctb.1993.1035.

Summary

We haven't generated a summary for this paper yet.