2000 character limit reached
Efficient Recognition of Subgraphs of Planar Cubic Bridgeless Graphs (2204.11750v2)
Published 25 Apr 2022 in cs.DS and math.CO
Abstract: It follows from the work of Tait and the Four-Color-Theorem that a planar cubic graph is 3-edge-colorable if and only if it contains no bridge. We consider the question of which planar graphs are subgraphs of planar cubic bridgeless graphs, and hence 3-edge-colorable. We provide an efficient recognition algorithm that given an $n$-vertex planar graph, augments this graph in $O(n2)$ steps to a planar cubic bridgeless supergraph, or decides that no such augmentation is possible. The main tools involve the Generalized Antifactor-problem for the fixed embedding case, and SPQR-trees for the variable embedding case.