Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 419 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Field theory expansions of string theory amplitudes (2401.05733v5)

Published 11 Jan 2024 in hep-th, hep-ph, math-ph, and math.MP

Abstract: Motivated by quantum field theory (QFT) considerations, we present new representations of the Euler-Beta function and tree-level string theory amplitudes using a new two-channel, local, crossing symmetric dispersion relation. Unlike standard series representations, the new ones are analytic everywhere except at the poles, sum over poles in all channels and include contact interactions, in the spirit of QFT. This enables us to consider mass-level truncation, which preserves all the features of the original amplitudes. By starting with such expansions for generalized Euler-Beta functions and demanding QFT like features, we single out the open superstring amplitude. We demonstrate the difficulty in deforming away from the string amplitude and show that a class of such deformations can be potentially interesting when there is level truncation. Our considerations also lead to new QFT-inspired, parametric representations of the Zeta function and $\pi$, which show fast convergence.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. M. F. Paulos, J. Penedones, J. Toledo, B. C. van Rees,  and P. Vieira, “The S-matrix bootstrap. Part III: higher dimensional amplitudes,” JHEP 12, 040 (2019), arXiv:1708.06765 [hep-th].
  2. A. Guerrieri, J. Penedones,  and P. Vieira, “Where Is String Theory in the Space of Scattering Amplitudes?” Phys. Rev. Lett. 127, 081601 (2021), arXiv:2102.02847 [hep-th].
  3. A. Sen, “String Field Theory as World-sheet UV Regulator,” JHEP 10, 119 (2019), arXiv:1902.00263 [hep-th].
  4. J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2007).
  5. A. Sinha and A. Zahed, “Crossing Symmetric Dispersion Relations in Quantum Field Theories,” Phys. Rev. Lett. 126, 181601 (2021), arXiv:2012.04877 [hep-th].
  6. F. Bhat, D. Chowdhury, A. Sinha, S. Tiwari,  and A. Zahed, “Bootstrapping High-Energy Observables,”   (2023), arXiv:2311.03451 [hep-th].
  7. P. Raman and A. Sinha, “QFT, EFT and GFT,” JHEP 12, 203 (2021), arXiv:2107.06559 [hep-th].
  8. C. Song, “Crossing-Symmetric Dispersion Relations without Spurious Singularities,” Phys. Rev. Lett. 131, 161602 (2023), arXiv:2305.03669 [hep-th].
  9. J. Polchinski, String theory. Vol. 2: Superstring theory and beyond, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2007).
  10. L.-Y. Chiang, Y.-t. Huang,  and H.-C. Weng, “Bootstrapping string theory EFT,”   (2023), arXiv:2310.10710 [hep-th].
  11. N. Arkani-Hamed, L. Eberhardt, Y.-t. Huang,  and S. Mizera, “On unitarity of tree-level string amplitudes,” JHEP 02, 197 (2022), arXiv:2201.11575 [hep-th].
  12. H. M. Srivastava, “Some Families of Rapidly Convergent Series Representations for the Zeta Functions,” Taiwanese Journal of Mathematics 4, 569 (2000).
  13. C. Cheung and G. N. Remmen, “Bespoke dual resonance,” Phys. Rev. D 108, 086009 (2023), arXiv:2308.03833 [hep-th].
  14. K. Häring and A. Zhiboedov, “The Stringy S-matrix Bootstrap: Maximal Spin and Superpolynomial Softness,”   (2023), arXiv:2311.13631 [hep-th].
  15. M. R. Gaberdiel and R. Gopakumar, “String Dual to Free N=4 Supersymmetric Yang-Mills Theory,” Phys. Rev. Lett. 127, 131601 (2021), arXiv:2104.08263 [hep-th].
  16. C. Sleight and M. Taronna, “Higher-Spin Gauge Theories and Bulk Locality,” Phys. Rev. Lett. 121, 171604 (2018), arXiv:1704.07859 [hep-th].
  17. N. Arkani-Hamed, T.-C. Huang,  and Y.-t. Huang, “The EFT-Hedron,” JHEP 05, 259 (2021a), arXiv:2012.15849 [hep-th].
  18. N. Arkani-Hamed, M. Pate, A.-M. Raclariu,  and A. Strominger, “Celestial amplitudes from UV to IR,” JHEP 08, 062 (2021b), arXiv:2012.04208 [hep-th].
  19. S. Stieberger and T. R. Taylor, “Strings on Celestial Sphere,” Nucl. Phys. B 935, 388 (2018), arXiv:1806.05688 [hep-th].
  20. S. Stieberger, T. R. Taylor,  and B. Zhu, “Carrollian Amplitudes from Strings,”   (2024), arXiv:2402.14062 [hep-th].
  21. G. Auberson and N. N. Khuri, “Rigorous parametric dispersion representation with three-channel symmetry,” Phys. Rev. D 6, 2953 (1972).
  22. S. D. Chowdhury, K. Ghosh, P. Haldar, P. Raman,  and A. Sinha, “Crossing Symmetric Spinning S-matrix Bootstrap: EFT bounds,” SciPost Phys. 13, 051 (2022), arXiv:2112.11755 [hep-th].
Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

  • The paper introduces a novel dispersion relation framework to expand string amplitudes using QFT techniques.
  • It achieves over 99% accuracy in approximating open superstring amplitudes through mass-level truncation while preserving key scattering characteristics.
  • The approach bridges theoretical divides by enhancing convergence properties and suggesting new methods for high-energy particle simulations.

Field Theory Expansions of String Theory Amplitudes

The paper "Field Theory Expansions of String Theory Amplitudes" by Arnab Priya Saha and Aninda Sinha presents a compelling investigation into the analytical convergence between string theory amplitudes and quantum field theory (QFT) forms. By illuminating a path to expand string amplitudes using QFT-inspired methodologies, the authors bridge a prominent theoretical divide, addressing points of symbiosis and variants in the structural interpretation of amplitude formulation.

Key Contributions and Findings

The authors introduce a novel representation of the Euler-Beta function and tree-level string theory amplitudes via a two-channel, local, crossing symmetric dispersion relation. This approach diverges from classical series representations by ensuring analyticity everywhere except the poles and permits a summation over poles across all channels. This perspective aligns more closely with the conceptual framework of QFT, particularly facilitating mass-level truncation while preserving the integral features of the full string amplitudes.

A central theme of the paper is the demonstration of how string amplitudes, specifically the open superstring amplitude, can be represented through a mass-truncation approach while retaining key characteristics such as Regge behavior and soft high-energy scattering profiles. This effectively counters the traditional understanding that string theory amplitudes cannot be reconciled within a field theory framework due to their exponential softness and the implicit complexity of interactions.

Further, the authors explore a parametric representation strategy, adding a layer of deformability which is absent in traditional representations. They provide evidence that the contact terms derived from truncated series representations can remain consistent across different parameterizations, importantly capturing qualitative and quantitative aspects of string amplitudes.

Numerical Results and Analytical Insights

The paper provides robust numerical evidence supporting the validity of their analytic approaches. For instance, they demonstrate the capacity of truncated series to approximate the full string amplitude with high fidelity, even within limited truncation levels. Through calculations that show more than 99% accuracy within minimal truncations, the authors articulate an efficient method to engage with high-energy scattering phenomena without loss of essential characteristics inherent to string theory.

Additionally, the route taken offers refreshing insights into the convergence properties of mathematical constructs often associated with string amplitudes, such as the Zeta function and π\pi, signifying rapid convergence through their new representations. This enhancement in convergence properties might suggest pivotal advancements in computational string theory applications and beyond.

Theoretical and Practical Implications

Theoretically, this paper challenges prevailing assumptions about the relationship between string theory and QFT, fortifying the case for a field theory analog that can encapsulate higher mass poles typically descriptive of string theory amplitudes. This can motivate new theoretical frameworks that bridge these domains, enriching our fundamental understanding of particle interaction paradigms.

Practically, the insights from this paper could fuel advancements in simulation techniques, particularly in areas where string and QFT overlap, such as quantum gravity contexts or in the precise modeling of particle collisions at extremely high energy scales.

Future Directions

The paper speculates on numerous future directions, including refining the approach to accommodate other configurations of string interactions and expanding upon the analytic expressibility of functions foundational to string theory. It invites further exploration into deformative approaches to standard string amplitudes and their functional adaptability within constrained approximation schemas.

Overall, the work by Saha and Sinha provides a concrete yet innovative contribution to bridging string theory's mathematical formulations with the pragmatic utilities of QFT approaches, potentially redrawing foundational landscapes in theoretical physics.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Youtube Logo Streamline Icon: https://streamlinehq.com