Field theory expansions of string theory amplitudes (2401.05733v5)
Abstract: Motivated by quantum field theory (QFT) considerations, we present new representations of the Euler-Beta function and tree-level string theory amplitudes using a new two-channel, local, crossing symmetric dispersion relation. Unlike standard series representations, the new ones are analytic everywhere except at the poles, sum over poles in all channels and include contact interactions, in the spirit of QFT. This enables us to consider mass-level truncation, which preserves all the features of the original amplitudes. By starting with such expansions for generalized Euler-Beta functions and demanding QFT like features, we single out the open superstring amplitude. We demonstrate the difficulty in deforming away from the string amplitude and show that a class of such deformations can be potentially interesting when there is level truncation. Our considerations also lead to new QFT-inspired, parametric representations of the Zeta function and $\pi$, which show fast convergence.
- M. F. Paulos, J. Penedones, J. Toledo, B. C. van Rees, and P. Vieira, “The S-matrix bootstrap. Part III: higher dimensional amplitudes,” JHEP 12, 040 (2019), arXiv:1708.06765 [hep-th].
- A. Guerrieri, J. Penedones, and P. Vieira, “Where Is String Theory in the Space of Scattering Amplitudes?” Phys. Rev. Lett. 127, 081601 (2021), arXiv:2102.02847 [hep-th].
- A. Sen, “String Field Theory as World-sheet UV Regulator,” JHEP 10, 119 (2019), arXiv:1902.00263 [hep-th].
- J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2007).
- A. Sinha and A. Zahed, “Crossing Symmetric Dispersion Relations in Quantum Field Theories,” Phys. Rev. Lett. 126, 181601 (2021), arXiv:2012.04877 [hep-th].
- F. Bhat, D. Chowdhury, A. Sinha, S. Tiwari, and A. Zahed, “Bootstrapping High-Energy Observables,” (2023), arXiv:2311.03451 [hep-th].
- P. Raman and A. Sinha, “QFT, EFT and GFT,” JHEP 12, 203 (2021), arXiv:2107.06559 [hep-th].
- C. Song, “Crossing-Symmetric Dispersion Relations without Spurious Singularities,” Phys. Rev. Lett. 131, 161602 (2023), arXiv:2305.03669 [hep-th].
- J. Polchinski, String theory. Vol. 2: Superstring theory and beyond, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2007).
- L.-Y. Chiang, Y.-t. Huang, and H.-C. Weng, “Bootstrapping string theory EFT,” (2023), arXiv:2310.10710 [hep-th].
- N. Arkani-Hamed, L. Eberhardt, Y.-t. Huang, and S. Mizera, “On unitarity of tree-level string amplitudes,” JHEP 02, 197 (2022), arXiv:2201.11575 [hep-th].
- H. M. Srivastava, “Some Families of Rapidly Convergent Series Representations for the Zeta Functions,” Taiwanese Journal of Mathematics 4, 569 (2000).
- C. Cheung and G. N. Remmen, “Bespoke dual resonance,” Phys. Rev. D 108, 086009 (2023), arXiv:2308.03833 [hep-th].
- K. Häring and A. Zhiboedov, “The Stringy S-matrix Bootstrap: Maximal Spin and Superpolynomial Softness,” (2023), arXiv:2311.13631 [hep-th].
- M. R. Gaberdiel and R. Gopakumar, “String Dual to Free N=4 Supersymmetric Yang-Mills Theory,” Phys. Rev. Lett. 127, 131601 (2021), arXiv:2104.08263 [hep-th].
- C. Sleight and M. Taronna, “Higher-Spin Gauge Theories and Bulk Locality,” Phys. Rev. Lett. 121, 171604 (2018), arXiv:1704.07859 [hep-th].
- N. Arkani-Hamed, T.-C. Huang, and Y.-t. Huang, “The EFT-Hedron,” JHEP 05, 259 (2021a), arXiv:2012.15849 [hep-th].
- N. Arkani-Hamed, M. Pate, A.-M. Raclariu, and A. Strominger, “Celestial amplitudes from UV to IR,” JHEP 08, 062 (2021b), arXiv:2012.04208 [hep-th].
- S. Stieberger and T. R. Taylor, “Strings on Celestial Sphere,” Nucl. Phys. B 935, 388 (2018), arXiv:1806.05688 [hep-th].
- S. Stieberger, T. R. Taylor, and B. Zhu, “Carrollian Amplitudes from Strings,” (2024), arXiv:2402.14062 [hep-th].
- G. Auberson and N. N. Khuri, “Rigorous parametric dispersion representation with three-channel symmetry,” Phys. Rev. D 6, 2953 (1972).
- S. D. Chowdhury, K. Ghosh, P. Haldar, P. Raman, and A. Sinha, “Crossing Symmetric Spinning S-matrix Bootstrap: EFT bounds,” SciPost Phys. 13, 051 (2022), arXiv:2112.11755 [hep-th].
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.