Twisting shadows: light rings, lensing and shadows of black holes in swirling universes (2401.05658v1)
Abstract: Using the Ernst formalism, a novel solution of vacuum General Relativity was recently obtained [1], describing a Schwarzschild black hole (BH) immersed in a non-asymptotically flat rotating background, dubbed swirling universe, with the peculiar property that north and south hemispheres spin in opposite directions. We investigate the null geodesic flow and, in particular, the existence of light rings in this vacuum geometry. By evaluating the total topological charge $w$, we show that there exists one unstable light ring ($w=-1$) for each rotation sense of the background. We observe that the swirling background drives the Schwarzschild BH light rings outside the equatorial plane, displaying counter-rotating motion with respect to each other, while (both) co-rotating with respect to the swirling universe. Using backwards ray-tracing, we obtain the shadow and gravitational lensing effects, revealing a novel feature for observers on the equatorial plane: the BH shadow displays an odd $\mathbb{Z}_2$ (north-south) symmetry, inherited from the same type of symmetry of the spacetime itself: a twisted shadow.
- M. Astorino, R. Martelli, and A. Viganò, Black holes in a swirling universe, Phys. Rev. D 106, 064014 (2022), arXiv:2205.13548 [gr-qc] .
- K. Schwarzschild, On the gravitational field of a mass point according to Einstein’s theory, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys. ) 1916, 189 (1916), arXiv:physics/9905030 .
- R. P. Kerr, Gravitational field of a spinning mass as an example of algebraically special metrics, Phys. Rev. Lett. 11, 237 (1963).
- C. A. R. Herdeiro, Black Holes: On the Universality of the Kerr Hypothesis, Lect. Notes Phys. 1017, 315 (2023), arXiv:2204.05640 [gr-qc] .
- K. Godel, An Example of a New Type of Cosmological Solutions of Einstein’s Field Equations of Gravitation, Rev. Mod. Phys. 21, 447 (1949).
- S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2023).
- A. H. Taub, Empty space-times admitting a three parameter group of motions, Annals Math. 53, 472 (1951).
- E. Newman, L. Tamburino, and T. Unti, Empty space generalization of the Schwarzschild metric, J. Math. Phys. 4, 915 (1963).
- G. W. Gibbons, A. H. Mujtaba, and C. N. Pope, Ergoregions in Magnetised Black Hole Spacetimes, Class. Quant. Grav. 30, 125008 (2013), arXiv:1301.3927 [gr-qc] .
- L. C. B. Crispino and D. Kennefick, 100 years of the first experimental test of General Relativity, Nature Phys. 15, 416 (2019), arXiv:1907.10687 [physics.hist-ph] .
- A. Einstein, Lens-Like Action of a Star by the Deviation of Light in the Gravitational Field, Science 84, 506 (1936).
- K. Akiyama et al. (Event Horizon Telescope), First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole, Astrophys. J. Lett. 875, L1 (2019), arXiv:1906.11238 [astro-ph.GA] .
- K. Akiyama et al. (Event Horizon Telescope), First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way, Astrophys. J. Lett. 930, L12 (2022), arXiv:2311.08680 [astro-ph.HE] .
- M. P. Dabrowski and F. E. Schunck, Boson stars as gravitational lenses, Astrophys. J. 535, 316 (2000), arXiv:astro-ph/9807039 .
- K. S. Virbhadra and G. F. R. Ellis, Schwarzschild black hole lensing, Phys. Rev. D 62, 084003 (2000), arXiv:astro-ph/9904193 .
- E. F. Eiroa, G. E. Romero, and D. F. Torres, Reissner-Nordstrom black hole lensing, Phys. Rev. D 66, 024010 (2002), arXiv:gr-qc/0203049 .
- M. Halla and V. Perlick, Application of the Gauss–Bonnet theorem to lensing in the NUT metric, Gen. Rel. Grav. 52, 112 (2020), [Erratum: Gen.Rel.Grav. 53, 68 (2021)], arXiv:2008.10093 [gr-qc] .
- V. Bozza, Gravitational Lensing by Black Holes, Gen. Rel. Grav. 42, 2269 (2010), arXiv:0911.2187 [gr-qc] .
- M. Afrin, S. Vagnozzi, and S. G. Ghosh, Tests of Loop Quantum Gravity from the Event Horizon Telescope Results of Sgr A*, Astrophys. J. 944, 149 (2023), arXiv:2209.12584 [gr-qc] .
- J. Badía and E. F. Eiroa, Shadows of rotating Einstein-Maxwell-dilaton black holes surrounded by a plasma, Phys. Rev. D 107, 124028 (2023), arXiv:2210.03081 [gr-qc] .
- S. Vagnozzi et al., Horizon-scale tests of gravity theories and fundamental physics from the Event Horizon Telescope image of Sagittarius A, Class. Quant. Grav. 40, 165007 (2023), arXiv:2205.07787 [gr-qc] .
- J. a. L. Rosa and D. Rubiera-Garcia, Shadows of boson and Proca stars with thin accretion disks, Phys. Rev. D 106, 084004 (2022), arXiv:2204.12949 [gr-qc] .
- J. a. L. Rosa, C. F. B. Macedo, and D. Rubiera-Garcia, Imaging compact boson stars with hot spots and thin accretion disks, Phys. Rev. D 108, 044021 (2023), arXiv:2303.17296 [gr-qc] .
- S. Wen, W. Hong, and J. Tao, Observational Appearances of Magnetically Charged Black Holes in Born-Infeld Electrodynamics, Eur. Phys. J. C 83, 277 (2023), arXiv:2212.03021 [gr-qc] .
- X.-M. Kuang and A. Övgün, Strong gravitational lensing and shadow constraint from M87* of slowly rotating Kerr-like black hole, Annals Phys. 447, 169147 (2022), arXiv:2205.11003 [gr-qc] .
- B. Bezdekova, V. Perlick, and J. Bicak, Light propagation in a plasma on an axially symmetric and stationary spacetime: Separability of the Hamilton–Jacobi equation and shadow, J. Math. Phys. 63, 092501 (2022), arXiv:2204.05593 [gr-qc] .
- A. Belhaj, M. Benali, and Y. Hassouni, Superentropic black hole shadows in arbitrary dimensions, Eur. Phys. J. C 82, 619 (2022), arXiv:2203.06774 [hep-th] .
- H.-M. Wang and S.-W. Wei, Shadow cast by Kerr-like black hole in the presence of plasma in Einstein-bumblebee gravity, Eur. Phys. J. Plus 137, 571 (2022), arXiv:2106.14602 [gr-qc] .
- P. V. P. Cunha, E. Berti, and C. A. R. Herdeiro, Light-Ring Stability for Ultracompact Objects, Phys. Rev. Lett. 119, 251102 (2017b), arXiv:1708.04211 [gr-qc] .
- P. V. P. Cunha and C. A. R. Herdeiro, Stationary black holes and light rings, Phys. Rev. Lett. 124, 181101 (2020), arXiv:2003.06445 [gr-qc] .
- S.-W. Wei, Topological Charge and Black Hole Photon Spheres, Phys. Rev. D 102, 064039 (2020), arXiv:2006.02112 [gr-qc] .
- S.-P. Wu and S.-W. Wei, Topology of light rings for extremal and nonextremal Kerr-Newman-Taub-NUT black holes without Z2 symmetry, Phys. Rev. D 108, 104041 (2023), arXiv:2307.14003 [gr-qc] .
- H. Falcke, F. Melia, and E. Agol, Viewing the shadow of the black hole at the galactic center, Astrophys. J. Lett. 528, L13 (2000), arXiv:astro-ph/9912263 .
- J. L. Synge, The Escape of Photons from Gravitationally Intense Stars, Mon. Not. Roy. Astron. Soc. 131, 463 (1966).
- F. J. Ernst, New formulation of the axially symmetric gravitational field problem, Phys. Rev. 167, 1175 (1968a).
- F. J. Ernst, New Formulation of the Axially Symmetric Gravitational Field Problem. II, Phys. Rev. 168, 1415 (1968b).
- M. Astorino, Embedding hairy black holes in a magnetic universe, Phys. Rev. D 87, 084029 (2013), arXiv:1301.6794 [gr-qc] .
- R. P. Geroch, A Method for generating solutions of Einstein’s equations, J. Math. Phys. 12, 918 (1971).
- W. Kinnersley, Generation of stationary Einstein‐Maxwell fields, J. Math. Phys. 14, 651 (1973).
- W. Kinnersley, Symmetries of the Stationary Einstein-Maxwell Field Equations. 1., J. Math. Phys. 18, 1529 (1977).
- B. Carter, The commutation property of a stationary, axisymmetric system, Commun. Math. Phys. 17, 233 (1970).
- A. Viganò, Black Holes and Solution Generating Techniques, Ph.D. thesis, Milan U. (2022), arXiv:2211.00436 [gr-qc] .
- S. Chandrasekhar, The mathematical theory of black holes (1985).
- R. Capobianco, B. Hartmann, and J. Kunz, Geodesic Motion in a Swirling Universe: The complete set of solutions, (2023), arXiv:2312.17347 [gr-qc] .
- M. P. Carmo, Geometria diferencial de curvas e superfícies (2005).
- V. P. Frolov, Embedding of the Kerr-Newman black hole surface in Euclidean space, Phys. Rev. D 73, 064021 (2006), arXiv:gr-qc/0601104 .
- V. Perlick and O. Y. Tsupko, Light propagation in a plasma on Kerr spacetime. II. Plasma imprint on photon orbits, (2023), arXiv:2311.10615 [gr-qc] .
- B. Carter, Global structure of the Kerr family of gravitational fields, Phys. Rev. 174, 1559 (1968).
- P. V. P. Cunha, Black hole shadows-Sombras de buracos negros, Ph.D. thesis, Universidade de Coimbra (Portugal) (2015).
- W. Kinnersley, Recent progress in exact solutions, in 7th International Conference on Gravitation and Relativity (1975) pp. 109–135.
- F. Larsen, Rotating Kaluza-Klein black holes, Nucl. Phys. B 575, 211 (2000), arXiv:hep-th/9909102 .
- P. V. P. Cunha, C. A. R. Herdeiro, and E. Radu, Spontaneously Scalarized Kerr Black Holes in Extended Scalar-Tensor–Gauss-Bonnet Gravity, Phys. Rev. Lett. 123, 011101 (2019), arXiv:1904.09997 [gr-qc] .
- C.-Y. Chen, Rotating black holes without ℤ2subscriptℤ2\mathbb{Z}_{2}blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT symmetry and their shadow images, JCAP 05, 040, arXiv:2004.01440 [gr-qc] .
- S. M. Carroll, Spacetime and Geometry: An Introduction to General Relativity (Cambridge University Press, 2019).
- B. O’neill, Semi-Riemannian geometry with applications to relativity (Academic press, 1983).
- F. Rahaman, The General Theory of Relativity: A Mathematical Approach (Cambridge University Press, 2021).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.