2000 character limit reached
An impossibility theorem concerning positive involvement in voting (2401.05657v4)
Published 11 Jan 2024 in econ.TH, cs.GT, and cs.MA
Abstract: In social choice theory with ordinal preferences, a voting method satisfies the axiom of positive involvement if adding to a preference profile a voter who ranks an alternative uniquely first cannot cause that alternative to go from winning to losing. In this note, we prove a new impossibility theorem concerning this axiom: there is no ordinal voting method satisfying positive involvement that also satisfies the Condorcet winner and loser criteria, resolvability, and a common invariance property for Condorcet methods, namely that the choice of winners depends only on the ordering of majority margins by size.
- Jean-Charles de Chevalier Borda. Mémoire sur les Élections au Scrutin. Histoire de l’Académie Royale des Sciences, Paris, 1781.
- M.J.A.N. de C., Marque de Condorcet. Essai sur l’application de l’analyse à la probabilitié des décisions rendues à la pluralité des voix. l’Imprimerie Royale, Paris, 1785.
- A. H. Copeland. A ‘reasonable’ social welfare function. Notes from a seminar on applications of mathematics to the social sciences, University of Michigan, 1951.
- Bernard Debord. Caractérisation des matrices des préférences nettes et méthodes d’agrégation associées. Mathématiques et sciences humaines, 97:5–17, 1987.
- Conal Duddy. Condorcet’s principle and the strong no-show paradoxes. Theory and Decision, 77:275–285, 2014. doi: 10.1007/s11238-013-9401-4.
- John Duggan. Uncovered sets. Social Choice and Welfare, 41(3):489–535, 2013. doi: 10.1007/s00355-012-0696-9.
- Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence, 77(2):321–357, 1995. doi: 10.1016/0004-3702(94)00041-X.
- Comparison functions and choice correspondences. Social Choice and Welfare, 16:513–532, 1999. doi: 10.1007/s003550050158.
- Weighted tournament solutions. In Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D. Procaccia, editors, Handbook of Computational Social Choice, pages 86–102. Cambridge University Press, New York, 2016. doi: 10.1017/CBO9781107446984.005.
- Peter C. Fishburn. Condorcet social choice functions. SIAM Journal on Applied Mathematics, 33(3):469–489, 1977. doi: 10.1137/0133030.
- Matthew Harrison-Trainor. An analysis of random elections with large numbers of voters. Mathematical Social Sciences, 116:68–84, 2022. doi: 10.1016/j.mathsocsci.2022.01.002.
- Jobst Heitzig. Social choice under incomplete, cyclic preferences: Majority/minority-based rules, and composition-consistency. arXiv:math/0201285 [math.CO], 2002.
- Measuring violations of positive involvement in voting. In J. Y. Halpern and A. Perea, editors, Theoretical Aspects of Rationality and Knowledge 2021 (TARK 2021), volume 335 of Electronic Proceedings in Theoretical Computer Science, pages 189–209, 2021. doi: 10.4204/EPTCS.335.17.
- Split Cycle: a new Condorcet-consistent voting method independent of clones and immune to spoilers. Public Choice, 197:1–62, 2023a. doi: 10.1007/s11127-023-01042-3.
- Stable Voting. Constitutional Political Economy, 34:421–433, 2023b. doi: 10.1007/s10602-022-09383-9.
- An extension of May’s Theorem to three alternatives: Axiomatizing Minimax voting. arXiv:2312.14256 [econ.TH], 2023c.
- Gerald H. Kramer. A dynamical model of political equilibrium. Journal of Economic Theory, 16(2):310–334, 1977. doi: 10.1016/0022-0531(77)90011-4.
- Nicholas R. Miller. A new solution set for tournaments and majority voting: Further graph-theoretical approaches to the theory of voting. American Journal of Political Science, 24(1):68–96, 1980. doi: 10.2307/2110925.
- Joaquín Pérez. The strong no show paradoxes are a common flaw in Condorcet voting correspondences. Social Choice and Welfare, 18(3):601–616, 2001. doi: 10.1007/s003550000079.
- Raúl Pérez-Fernández and Bernard De Baets. The supercovering relation, the pairwise winner, and more missing links between Borda and Condorcet. Social Choice and Welfare, 50:329–352, 2018. doi: 10.1007/s00355-017-1086-0.
- On the robustness of preference aggregation in noisy environments. In Ulle Endriss and Jérôme Lang, editors, Proceedings of the 1st International Workshop on Computational Social Choice (COMSOC-2006). ILLC, University of Amsterdam, December 2006.
- Donald G. Saari. Basic Geometry of Voting. Springer, Berlin, 1995. doi: 10.1007/978-3-642-57748-2.
- Markus Schulze. A new monotonic, clone-independent, reversal symmetric, and condorcet-consistent single-winner election method. Social Choice and Welfare, 36:267–303, 2011. doi: 10.1007/s00355-010-0475-4.
- Paul B. Simpson. On defining areas of voter choice: Professor Tullock on stable voting. The Quarterly Journal of Economics, 83(3):478–490, 1969. doi: 10.2307/1880533.
- John H. Smith. Aggregation of preferences with variable electorate. Econometrica, 41(6):1027–1041, 1973. doi: 10.2307/1914033.
- T. N. Tideman. A majority-rule characterization with multiple extensions. Social Choice and Welfare, 3:17–30, 1986. doi: 10.1007/BF00433521.
- T. Nicolaus Tideman. Independence of clones as a criterion for voting rules. Social Choice and Welfare, 4:185–206, 1987. doi: 10.1007/bf00433944.
- H. P. Young. Extending Condorcet’s rule. Journal of Economic Theory, 16:335–353, 1977. doi: 10.1016/0022-0531(77)90012-6.