Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Learning and Feature Ranking for Impact Fall Detection Event Using Multisensor Data (2401.05407v1)

Published 21 Dec 2023 in eess.SP, cs.CV, and cs.LG

Abstract: Falls among individuals, especially the elderly population, can lead to serious injuries and complications. Detecting impact moments within a fall event is crucial for providing timely assistance and minimizing the negative consequences. In this work, we aim to address this challenge by applying thorough preprocessing techniques to the multisensor dataset, the goal is to eliminate noise and improve data quality. Furthermore, we employ a feature selection process to identify the most relevant features derived from the multisensor UP-FALL dataset, which in turn will enhance the performance and efficiency of machine learning models. We then evaluate the efficiency of various machine learning models in detecting the impact moment using the resulting data information from multiple sensors. Through extensive experimentation, we assess the accuracy of our approach using various evaluation metrics. Our results achieve high accuracy rates in impact detection, showcasing the power of leveraging multisensor data for fall detection tasks. This highlights the potential of our approach to enhance fall detection systems and improve the overall safety and well-being of individuals at risk of falls.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. G. A. Kundakçi, M. Yılmaz, and M. K. Sözmen, “Determination of the costs of falls in the older people according to the decision tree model,” Archives of gerontology and geriatrics, vol. 87, p. 104007, 2020.
  2. M. K. Karlsson, H. Magnusson, T. von Schewelov, and B. E. Rosengren, “Prevention of falls in the elderly—a review,” Osteoporosis international, vol. 24, pp. 747–762, 2013.
  3. F. Fahimi, W. R. Taylor, R. Dietzel, G. Armbrecht, and N. Singh, “Identifying fallers based on functional parameters: A machine learning approach,” in 2021 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE).   IEEE, 2021, pp. 1–6.
  4. T.-H. Chi, K.-C. Liu, C.-Y. Hsieh, Y. Tsao, and C.-T. Chan, “Prefallkd: Pre-impact fall detection via cnn-vit knowledge distillation,” in ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).   IEEE, 2023, pp. 1–5.
  5. F. G. Miskelly, “Assistive technology in elderly care,” Age and ageing, vol. 30, no. 6, pp. 455–458, 2001.
  6. P. Jantaraprim, P. Phukpattaranont, C. Limsakul, and B. Wongkittisuksa, “Evaluation of fall detection for the elderly on a variety of subject groups,” in Proceedings of the 3rd International Convention on Rehabilitation Engineering & Assistive Technology, 2009, pp. 1–4.
  7. I. P. E. S. Putra, J. Brusey, E. Gaura, and R. Vesilo, “An event-triggered machine learning approach for accelerometer-based fall detection,” Sensors, vol. 18, no. 1, p. 20, 2017.
  8. X. Yu, H. Qiu, and S. Xiong, “A novel hybrid deep neural network to predict pre-impact fall for older people based on wearable inertial sensors,” Frontiers in bioengineering and biotechnology, vol. 8, p. 63, 2020.
  9. L. Martínez-Villaseñor, H. Ponce, J. Brieva, E. Moya-Albor, J. Núñez-Martínez, and C. Peñafort-Asturiano, “Up-fall detection dataset: A multimodal approach,” Sensors, vol. 19, no. 9, p. 1988, 2019.
  10. M. J. Al Nahian, T. Ghosh, M. H. Al Banna, M. A. Aseeri, M. N. Uddin, M. R. Ahmed, M. Mahmud, and M. S. Kaiser, “Towards an accelerometer-based elderly fall detection system using cross-disciplinary time series features,” IEEE Access, vol. 9, pp. 39 413–39 431, 2021.
  11. S. S. Jeong, N. H. Kim, and Y. S. Yu, “Fall detection system based on simple threshold method and long short-term memory: Comparison with hidden markov model and extraction of optimal parameters,” Applied Sciences, vol. 12, no. 21, p. 11031, 2022.
  12. A. K. Bourke, J. O’brien, and G. M. Lyons, “Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm,” Gait & posture, vol. 26, no. 2, pp. 194–199, 2007.
  13. B. Chandra and M. Gupta, “An efficient statistical feature selection approach for classification of gene expression data,” Journal of biomedical informatics, vol. 44, no. 4, pp. 529–535, 2011.
  14. S. Janitza and R. Hornung, “On the overestimation of random forest’s out-of-bag error,” PloS one, vol. 13, no. 8, p. e0201904, 2018.
  15. W. S. Noble, “What is a support vector machine?” Nature biotechnology, vol. 24, no. 12, pp. 1565–1567, 2006.
  16. S.-H. Liu and W.-C. Cheng, “Fall detection with the support vector machine during scripted and continuous unscripted activities,” Sensors, vol. 12, no. 9, pp. 12 301–12 316, 2012.
  17. Y.-Y. Song and L. Ying, “Decision tree methods: applications for classification and prediction,” Shanghai archives of psychiatry, vol. 27, no. 2, p. 130, 2015.
  18. A. Paul, D. P. Mukherjee, P. Das, A. Gangopadhyay, A. R. Chintha, and S. Kundu, “Improved random forest for classification,” IEEE Transactions on Image Processing, vol. 27, no. 8, pp. 4012–4024, 2018.
  19. G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu, “Lightgbm: A highly efficient gradient boosting decision tree,” Advances in neural information processing systems, vol. 30, 2017.
  20. K. Gunale and P. Mukherji, “Indoor human fall detection system based on automatic vision using computer vision and machine learning algorithms,” J. Eng. Sci. Technol, vol. 13, no. 8, pp. 2587–2605, 2018.
  21. O. Altay and M. Ulas, “The use of kernel-based extreme learning machine and well-known classification algorithms for fall detection,” in Advances in Computer Communication and Computational Sciences: Proceedings of IC4S 2017, Volume 2.   Springer, 2019, pp. 147–155.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets