Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Smart Application for Fall Detection Using Wearable ECG & Accelerometer Sensors (2207.00008v2)

Published 28 Jun 2022 in cs.HC, cs.AI, and cs.LG

Abstract: Timely and reliable detection of falls is a large and rapidly growing field of research due to the medical and financial demand of caring for a constantly growing elderly population. Within the past 2 decades, the availability of high-quality hardware (high-quality sensors and AI microchips) and software (machine learning algorithms) technologies has served as a catalyst for this research by giving developers the capabilities to develop such systems. This study developed multiple application components in order to investigate the development challenges and choices for fall detection systems, and provide materials for future research. The smart application developed using this methodology was validated by the results from fall detection modelling experiments and model mobile deployment. The best performing model overall was the ResNet152 on a standardised, and shuffled dataset with a 2s window size which achieved 92.8% AUC, 87.28% sensitivity, and 98.33% specificity. Given these results it is evident that accelerometer and ECG sensors are beneficial for fall detection, and allow for the discrimination between falls and other activities. This study leaves a significant amount of room for improvement due to weaknesses identified in the resultant dataset. These improvements include using a labelling protocol for the critical phase of a fall, increasing the number of dataset samples, improving the test subject representation, and experimenting with frequency domain preprocessing.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Harry Wixley (1 paper)

Summary

We haven't generated a summary for this paper yet.