Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Analytic three-dimensional primary hair charged black holes with Coulomb-like electrodynamics and their thermodynamics (2401.04561v1)

Published 9 Jan 2024 in gr-qc and hep-th

Abstract: We construct and discuss new solutions of primary hair charged black holes in asymptotically Anti-de Sitter (AdS) space that have well-defined Coulomb-like potential in three dimensions. The gauge field source to the Einstein equation is a power-Maxwell nonlinear electrodynamics with traceless energy-momentum tensor. The coupled Einstein-power-Maxwell-scalar gravity system, which carries the coupling $f(\phi)$ between the gauge and scalar fields, is analyzed, and hairy charged black hole solutions are found analytically. We consider three different profiles of the coupling functions: (i) $f(\phi)=1$, corresponding to no direct coupling between the gauge and scalar fields, (ii) $f(\phi)=e{\phi}$, and (iii) $f(\phi)=e{\phi2/2}$, corresponding to their non-minimal coupling. For all these cases, the scalar field, gauge fields, and curvature scalars are regular and well-behaved everywhere outside the horizon. We further study the thermodynamics of the obtained hairy black hole in the canonical and grand-canonical ensembles and find significant changes in its thermodynamic structure due to the scalar field. In particular, for all considered coupling functions, the hairy parameter has a critical value above which the hairy black hole undergoes the Hawking/Page phase transition, whereas below which no such phase transition appears.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (133)
  1. S. W. Hawking. Particle Creation by Black Holes. Commun. Math. Phys., 43:199–220, 1975. [Erratum: Commun.Math.Phys. 46, 206 (1976)].
  2. Action Integrals and Partition Functions in Quantum Gravity. Phys. Rev. D, 15:2752–2756, 1977.
  3. Jacob D. Bekenstein. Black holes and entropy. Phys. Rev. D, 7:2333–2346, Apr 1973.
  4. Thermodynamics of Black Holes in anti-De Sitter Space. Commun. Math. Phys., 87:577, 1983.
  5. Charged ads black holes and catastrophic holography. Phys. Rev. D, 60:064018, Aug 1999.
  6. Holography, thermodynamics, and fluctuations of charged ads black holes. Phys. Rev. D, 60:104026, Oct 1999.
  7. Phases of R charged black holes, spinning branes and strongly coupled gauge theories. JHEP, 04:024, 1999.
  8. On the Thermodynamic Geometry and Critical Phenomena of AdS Black Holes. JHEP, 07:082, 2010.
  9. Thermodynamic Geometry and Phase Transitions in Kerr-Newman-AdS Black Holes. JHEP, 04:118, 2010.
  10. Thermodynamics and Entanglement Entropy with Weyl Corrections. Phys. Rev. D, 94(2):026006, 2016.
  11. Subhash Mahapatra. Thermodynamics, Phase Transition and Quasinormal modes with Weyl corrections. JHEP, 04:142, 2016.
  12. The Black hole in three-dimensional space-time. Phys. Rev. Lett., 69:1849–1851, 1992.
  13. Geometry of the 2+1 black hole. Phys. Rev. D, 48:1506–1525, Aug 1993.
  14. J. David Brown and M. Henneaux. Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity. Commun. Math. Phys., 104:207–226, 1986.
  15. Juan Martin Maldacena. The Large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys., 2:231–252, 1998.
  16. Andrew Strominger. Black hole entropy from near horizon microstates. JHEP, 02:009, 1998.
  17. A. Achucarro and P. K. Townsend. A Chern-Simons Action for Three-Dimensional anti-De Sitter Supergravity Theories. Phys. Lett. B, 180:89, 1986.
  18. Edward Witten. (2+1)-Dimensional Gravity as an Exactly Soluble System. Nucl. Phys. B, 311:46, 1988.
  19. Steven Carlip. The (2+1)-Dimensional black hole. Class. Quant. Grav., 12:2853–2880, 1995.
  20. Gravitational repulsive effects in 3D regular black holes. 11 2023.
  21. Anisotropic Generalized Polytropic Spheres: Regular 3D Black Holes. 12 2023.
  22. Charged rotating black hole in three space-time dimensions. Phys. Rev. D, 61:104013, 2000.
  23. Massive Gravity in Three Dimensions. Phys. Rev. Lett., 102:201301, 2009.
  24. Higher spin black hole entropy in three dimensions. JHEP, 04:143, 2013.
  25. Spacetime Geometry in Higher Spin Gravity. JHEP, 10:053, 2011.
  26. (2+1)-dimensional black hole with Coulomb - like field. Phys. Lett. B, 484:154, 2000.
  27. Alberto A. García-Díaz. Exact Solutions in Three-Dimensional Gravity. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 9 2017.
  28. Thermodynamics of the Three-dimensional Black Hole with a Coulomb-like Field. Electron. J. Theor. Phys., 9(27):121–130, 2012.
  29. Alexis Larranaga. Thermodynamics of the (2+1)-dimensional Black Hole with non linear Electrodynamics and without Cosmological Constant from the Generalized Uncertainly Principle. Bulg. J. Phys., 37:10–15, 2010.
  30. Leonardo Balart. Energy distribution of 2+1 dimensional black holes with nonlinear electrodynamics. Mod. Phys. Lett. A, 24:2777–2785, 2009.
  31. 2+1 dimensional magnetically charged solutions in Einstein - Power - Maxwell theory. Phys. Rev. D, 84:124021, 2011.
  32. Non-linear black holes in 2+1 dimensions as heat engines. Phys. Lett. B, 795:638–643, 2019.
  33. Scale-dependent ( 2+1212+12 + 1 )-dimensional electrically charged black holes in Einstein-power-Maxwell theory. Eur. Phys. J. C, 78(8):641, 2018.
  34. Scale dependent three-dimensional charged black holes in linear and non-linear electrodynamics. Eur. Phys. J. C, 77(7):494, 2017.
  35. M. Dehghani. Thermodynamics of (2+1)21(2+1)( 2 + 1 )-dimensional charged black holes with power-law Maxwell field. Phys. Rev. D, 94(10):104071, 2016.
  36. Thermodynamics of ( 2+1 )-dimensional Coulomb-like black holes from nonlinear electrodynamics with a traceless energy momentum tensor. Phys. Rev. D, 103(2):024047, 2021.
  37. A new Einstein-nonlinear electrodynamics solution in 2 + 1 dimensions. Eur. Phys. J. C, 74(1):2735, 2014.
  38. Superradiant instability and charged scalar quasinormal modes for (2+1)-dimensional Coulomb-like AdS black holes from nonlinear electrodynamics. Phys. Rev. D, 104(8):084047, 2021.
  39. Z. Amirabi. Generalized Einstein–Power Maxwell theory in 2+1-dimensions. Eur. Phys. J. Plus, 136(5):569, 2021.
  40. Scalar quasinormal modes for 2+1212+12 + 1-dimensional Coulomb-like AdS black holes from nonlinear electrodynamics. Gen. Rel. Grav., 53(10):91, 2021.
  41. Ahmad Sheykhi. Higher-dimensional charged f⁢(R)𝑓𝑅f(R)italic_f ( italic_R ) black holes. Phys. Rev. D, 86:024013, 2012.
  42. Conformally dressed black hole in (2+1)-dimensions. Phys. Rev. D, 54:3830–3833, 1996.
  43. Black holes and asymptotics of 2+1 gravity coupled to a scalar field. Phys. Rev. D, 65:104007, 2002.
  44. Static charged black holes in (2+1)-dimensional dilaton gravity. Phys. Rev. D, 50:6385, 1994. [Erratum: Phys.Rev.D 52, 2600 (1995)].
  45. Kevin C. K. Chan. Modifications of the BTZ black hole by a dilaton / scalar. Phys. Rev. D, 55:3564–3574, 1997.
  46. Stealth scalar field overflying a (2+1) black hole. Gen. Rel. Grav., 38:145–152, 2006.
  47. Scale invariant hairy black holes. Phys. Rev. D, 72:064019, 2005.
  48. Scalar solitons and the microscopic entropy of hairy black holes in three dimensions. JHEP, 01:034, 2011.
  49. Rotating hairy black hole and its microscopic entropy in three spacetime dimensions. Phys. Rev. D, 87(2):027502, 2013.
  50. Charged black hole with a scalar hair in (2+1) dimensions. Phys. Rev. D, 87(12):124008, 2013.
  51. Three dimensional rotating hairy black holes, asymptotics and thermodynamics. 6 2014.
  52. Three-dimensional black holes with conformally coupled scalar and gauge fields. Phys. Rev. D, 90(12):124072, 2014.
  53. General black hole solutions in ( 2+1 )-dimensions with a scalar field nonminimally coupled to gravity. Phys. Rev. D, 100(2):024003, 2019.
  54. M. Dehghani. Thermodynamics of novel charged dilatonic BTZ black holes. Phys. Lett. B, 773:105–111, 2017.
  55. M. Dehghani. Thermodynamics of (2+1)-dimensional black holes in Einstein-Maxwell-dilaton gravity. Phys. Rev. D, 96(4):044014, 2017.
  56. Regular black holes in three dimensions. Phys. Rev. D, 104(2):L021501, 2021.
  57. Scaling symmetry and scalar hairy rotating AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT black holes. Phys. Rev. D, 93(2):024041, 2016.
  58. Rotating (2+1)-dimensional black holes in Einstein-Maxwell-dilaton theory. Phys. Rev. D, 107(2):024043, 2023.
  59. Thermodynamics of rotating black holes with scalar hair in three dimensions. Phys. Rev. D, 90(10):104035, 2014.
  60. Rotating charged hairy black hole in (2+1) dimensions and particle acceleration. Commun. Theor. Phys., 62(3):358–362, 2014.
  61. Novel rotating hairy black hole in (2+1)-dimensions. Commun. Theor. Phys., 61(4):475–481, 2014.
  62. Thermodynamics of a BTZ black hole solution with an Horndeski source. Phys. Rev. D, 90(2):024008, 2014.
  63. Spinning black holes for generalized scalar tensor theories in three dimensions. Phys. Rev. D, 102(2):024088, 2020.
  64. Thermodynamics and Cardy-like formula for nonminimally dressed, charged Lifshitz black holes in new massive gravity. Class. Quant. Grav., 37(7):075016, 2020.
  65. Black Holes with Scalar Hair in Three Dimensions. 5 2023.
  66. Introducing the black hole. Phys. Today, 24(1):30, 1971.
  67. Jacob D. Bekenstein. Nonexistence of baryon number for static black holes. Phys. Rev. D, 5:1239–1246, 1972.
  68. D. Sudarsky. A Simple proof of a no hair theorem in Einstein Higgs theory,. Class. Quant. Grav., 12:579–584, 1995.
  69. M. Heusler. A No hair theorem for selfgravitating nonlinear sigma models. J. Math. Phys., 33:3497–3502, 1992.
  70. Carlos A. R. Herdeiro and Eugen Radu. Asymptotically flat black holes with scalar hair: a review. Int. J. Mod. Phys. D, 24(09):1542014, 2015.
  71. Werner Israel. Event horizons in static vacuum space-times. Phys. Rev., 164:1776–1779, 1967.
  72. Robert M. Wald. Final states of gravitational collapse. Phys. Rev. Lett., 26:1653–1655, 1971.
  73. B. Carter. Axisymmetric Black Hole Has Only Two Degrees of Freedom. Phys. Rev. Lett., 26:331–333, 1971.
  74. D. C. Robinson. Uniqueness of the Kerr black hole. Phys. Rev. Lett., 34:905–906, 1975.
  75. P. O. Mazur. PROOF OF UNIQUENESS OF THE KERR-NEWMAN BLACK HOLE SOLUTION. J. Phys. A, 15:3173–3180, 1982.
  76. P. O. Mazur. A Global Identity for Nonlinear σ𝜎\sigmaitalic_σ Models. Phys. Lett. A, 100:341, 1984.
  77. C. Teitelboim. Nonmeasurability of the quantum numbers of a black hole. Phys. Rev. D, 5:2941–2954, 1972.
  78. Black holes in Einstein Yang-Mills theory. (In Russian). Sov. J. Nucl. Phys., 51:747–753, 1990.
  79. P. Bizon. Colored black holes. Phys. Rev. Lett., 64:2844–2847, 1990.
  80. NonAbelian Einstein Yang-Mills black holes. JETP Lett., 50:346–350, 1989.
  81. Eluding the no hair conjecture: Black holes in spontaneously broken gauge theories. Phys. Rev. D, 47:2242–2259, 1993.
  82. Dilatonic black holes in higher curvature string gravity. Phys. Rev. D, 54:5049–5058, 1996.
  83. BLACK HOLES HAVE SKYRMION HAIR. Phys. Lett. B, 176:341–345, 1986.
  84. New black hole solutions with hair. Phys. Lett. B, 268:371–376, 1991.
  85. Hairy black holes by gravitational decoupling. Phys. Dark Univ., 31:100744, 2021.
  86. Rotating hairy black holes and thermodynamics from gravitational decoupling. Phys. Dark Univ., 39:101172, 2023.
  87. No scalar hair conjecture in asymptotic de Sitter space-time. Phys. Rev. D, 59:064027, 1999.
  88. Scalar hair on the black hole in asymptotically anti-de Sitter space-time. Phys. Rev. D, 64:044007, 2001.
  89. Elizabeth Winstanley. On the existence of conformally coupled scalar field hair for black holes in (anti-)de Sitter space. Found. Phys., 33:111–143, 2003.
  90. Exact black hole solution with a minimally coupled scalar field. Phys. Rev. D, 70:084035, 2004.
  91. Electrically charged black hole with scalar hair. Phys. Rev. D, 74:064007, 2006.
  92. Black holes with scalar hair and asymptotics in N = 8 supergravity. JHEP, 07:051, 2004.
  93. Asymptotic behavior and Hamiltonian analysis of anti-de Sitter gravity coupled to scalar fields. Annals Phys., 322:824–848, 2007.
  94. Carlos A. R. Herdeiro and Eugen Radu. Kerr black holes with scalar hair. Phys. Rev. Lett., 112:221101, 2014.
  95. Spontaneous Scalarization of Charged Black Holes. Phys. Rev. Lett., 121(10):101102, 2018.
  96. Thomas Hertog. Towards a Novel no-hair Theorem for Black Holes. Phys. Rev. D, 74:084008, 2006.
  97. A New Class of Exact Hairy Black Hole Solutions. Gen. Rel. Grav., 43:163–180, 2011.
  98. Four-Dimensional Asymptotically AdS Black Holes with Scalar Hair. JHEP, 12:021, 2013.
  99. Hairy black holes and solitons in global A⁢d⁢S5𝐴𝑑subscript𝑆5AdS_{5}italic_A italic_d italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT. JHEP, 08:117, 2012.
  100. Small Hairy Black Holes in A⁢d⁢S5⁢x⁢S5𝐴𝑑subscript𝑆5𝑥superscript𝑆5AdS_{5}xS^{5}italic_A italic_d italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT italic_x italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT. JHEP, 11:035, 2011.
  101. Black holes with only one Killing field. JHEP, 07:115, 2011.
  102. Exact Hairy Black Holes and their Modification to the Universal Law of Gravitation. Phys. Rev. D, 86:107501, 2012.
  103. Scalar Hair from a Derivative Coupling of a Scalar Field to the Einstein Tensor. Class. Quant. Grav., 29:205011, 2012.
  104. Phase Transition to a Hairy Black Hole in Asymptotically Flat Spacetime. JHEP, 11:133, 2013.
  105. Criticality from Einstein-Maxwell-dilaton holography at finite temperature and density. Phys. Rev. D, 102(12):126003, 2020.
  106. Thermodynamics and phase structure of an Einstein-Maxwell-scalar model in extended phase space. Phys. Rev. D, 105(6):064069, 2022.
  107. Exact asymptotically flat charged hairy black holes with a dilaton potential. JHEP, 10:184, 2013.
  108. Hairy Black Hole Chemistry. JHEP, 11:043, 2019.
  109. Analytic topological hairy dyonic black holes and thermodynamics. Phys. Rev. D, 104(8):084023, 2021.
  110. Exact topological charged hairy black holes in AdS Space in D𝐷Ditalic_D-dimensions. Phys. Rev. D, 102(2):024042, 2020.
  111. Scalarized Kerr-Newman black holes. JHEP, 10:076, 2023.
  112. Scalarization of the Reissner-Nordsröm black hole with higher gauge field corrections. 11 2023.
  113. Motion of particles around a magnetically charged Euler-Heisenberg black hole with scalar hair and the Event Horizon Telescope. 11 2023.
  114. Mohsen Dehghani. Three-dimensional black holes with scalar hair coupled to a Maxwell-like electrodynamics. Mod. Phys. Lett. A, 37(30):2250205, 2022.
  115. M. Dehghani. Nonlinearly charged three-dimensional black holes in the Einstein-dilaton gravity theory. Eur. Phys. J. Plus, 133(11):474, 2018.
  116. M. Dehghani. Three-dimensional scalar-tensor black holes with conformally invariant electrodynamics. Phys. Rev. D, 100(8):084019, 2019.
  117. Dilatonic BTZ black holes with power-law field. Phys. Lett. B, 767:214–225, 2017.
  118. Analytic three-dimensional primary hair charged black holes and thermodynamics. Phys. Rev. D, 108(4):044017, 2023.
  119. Thermal entropy of a quark-antiquark pair above and below deconfinement from a dynamical holographic QCD model. Phys. Rev. D, 96(12):126010, 2017.
  120. A quenched 2-flavour Einstein–Maxwell–Dilaton gauge-gravity model. Eur. Phys. J. A, 57(4):142, 2021.
  121. Chiral transition in the probe approximation from an Einstein-Maxwell-dilaton gravity model. Phys. Rev. D, 103(8):086021, 2021.
  122. On the time dependence of holographic complexity in a dynamical Einstein-dilaton model. JHEP, 11:138, 2018.
  123. Anisotropic string tensions and inversely magnetic catalyzed deconfinement from a dynamical AdS/QCD model. Phys. Lett. B, 801:135184, 2020.
  124. Phase Structure in a Dynamical Soft-Wall Holographic QCD Model. JHEP, 04:093, 2013.
  125. Holographic Anisotropic Background with Confinement-Deconfinement Phase Transition. JHEP, 05:206, 2018.
  126. Holographic model for light quarks in anisotropic hot dense QGP with external magnetic field. Eur. Phys. J. C, 83(1):79, 2023.
  127. Holographic anisotropic model for light quarks with confinement-deconfinement phase transition. JHEP, 06:090, 2021.
  128. A gauge/gravity duality model for gauge theory thermodynamics. Phys. Rev. D, 80:126008, 2009.
  129. Steven S. Gubser. Curvature singularities: The Good, the bad, and the naked. Adv. Theor. Math. Phys., 4:679–745, 2000.
  130. Holographic confining-deconfining gauge theories and entanglement measures with a magnetic field. Phys. Rev. D, 107(8):086016, 2023.
  131. Anisotropic and frame dependent chaos of suspended strings from a dynamical holographic QCD model with magnetic field. JHEP, 06:178, 2023.
  132. Entropic force and real-time dynamics of holographic quarkonium in a magnetic field. Phys. Rev. D, 105(8):086011, 2022.
  133. Stability in Gauged Extended Supergravity. Annals Phys., 144:249, 1982.
Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.