Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Combining Embedding-Based and Semantic-Based Models for Post-hoc Explanations in Recommender Systems (2401.04474v1)

Published 9 Jan 2024 in cs.IR and cs.AI

Abstract: In today's data-rich environment, recommender systems play a crucial role in decision support systems. They provide to users personalized recommendations and explanations about these recommendations. Embedding-based models, despite their widespread use, often suffer from a lack of interpretability, which can undermine trust and user engagement. This paper presents an approach that combines embedding-based and semantic-based models to generate post-hoc explanations in recommender systems, leveraging ontology-based knowledge graphs to improve interpretability and explainability. By organizing data within a structured framework, ontologies enable the modeling of intricate relationships between entities, which is essential for generating explanations. By combining embedding-based and semantic based models for post-hoc explanations in recommender systems, the framework we defined aims at producing meaningful and easy-to-understand explanations, enhancing user trust and satisfaction, and potentially promoting the adoption of recommender systems across the e-commerce sector.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. Y. Zhang, X. Chen, et al., “Explainable recommendation: A survey and new perspectives,” Foundations and Trends® in Information Retrieval, vol. 14, no. 1, pp. 1–101, 2020.
  2. F. Zhang, N. J. Yuan, D. Lian, X. Xie, and W.-Y. Ma, “Collaborative knowledge base embedding for recommender systems,” in Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp. 353–362, 2016.
  3. X. Wang, D. Wang, C. Xu, X. He, Y. Cao, and T.-S. Chua, “Explainable reasoning over knowledge graphs for recommendation,” in Proceedings of the AAAI conference on artificial intelligence, vol. 33, pp. 5329–5336, 2019.
  4. E. Palumbo, D. Monti, G. Rizzo, R. Troncy, and E. Baralis, “entity2rec: Property-specific knowledge graph embeddings for item recommendation,” Expert Systems with Applications, vol. 151, p. 113235, 2020.
  5. J. Zhong and E. Negre, “Shap-enhanced counterfactual explanations for recommendations,” in Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, pp. 1365–1372, 2022.
  6. M. Bilgic and R. J. Mooney, “Explaining recommendations: Satisfaction vs. promotion,” in Beyond personalization workshop, IUI, vol. 5, p. 153, 2005.
  7. W. Saeed and C. Omlin, “Explainable ai (xai): A systematic meta-survey of current challenges and future opportunities,” Knowledge-Based Systems, p. 110273, 2023.
  8. M. Alshammari, O. Nasraoui, and S. Sanders, “Mining semantic knowledge graphs to add explainability to black box recommender systems,” IEEE Access, vol. 7, pp. 110563–110579, 2019.
  9. C.-M. Chen, C.-J. Wang, M.-F. Tsai, and Y.-H. Yang, “Collaborative similarity embedding for recommender systems,” in The World Wide Web Conference, pp. 2637–2643, 2019.
  10. R. Confalonieri, T. Weyde, T. R. Besold, and F. M. del Prado Martín, “Using ontologies to enhance human understandability of global post-hoc explanations of black-box models,” Artificial Intelligence, vol. 296, p. 103471, 2021.
  11. B. Dong, Y. Zhu, L. Li, and X. Wu, “Hybrid collaborative recommendation of co-embedded item attributes and graph features,” Neurocomputing, vol. 442, pp. 307–316, 2021.
  12. H. Liu, Y. Wang, Q. Peng, F. Wu, L. Gan, L. Pan, and P. Jiao, “Hybrid neural recommendation with joint deep representation learning of ratings and reviews,” Neurocomputing, vol. 374, pp. 77–85, 2020.
  13. D. Pan, X. Li, X. Li, and D. Zhu, “Explainable recommendation via interpretable feature mapping and evaluation of explainability,” arXiv preprint arXiv:2007.06133, 2020.
  14. X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural collaborative filtering,” in Proceedings of the 26th international conference on world wide web, pp. 173–182, 2017.
  15. X. Wang, X. He, Y. Cao, M. Liu, and T.-S. Chua, “Kgat: Knowledge graph attention network for recommendation,” in Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 950–958, 2019.
  16. M. Arafeh, P. Ceravolo, A. Mourad, E. Damiani, and E. Bellini, “Ontology based recommender system using social network data,” Future Generation Computer Systems, vol. 115, pp. 769–779, 2021.
  17. Q. Guo, F. Zhuang, C. Qin, H. Zhu, X. Xie, H. Xiong, and Q. He, “A survey on knowledge graph-based recommender systems,” IEEE Transactions on Knowledge and Data Engineering, vol. 34, no. 8, pp. 3549–3568, 2020.
  18. Y. Zhang, X. Xu, H. Zhou, and Y. Zhang, “Distilling structured knowledge into embeddings for explainable and accurate recommendation,” in Proceedings of the 13th international conference on web search and data mining, pp. 735–743, 2020.
  19. I. Padhiar, O. Seneviratne, S. Chari, D. Gruen, and D. L. McGuinness, “Semantic modeling for food recommendation explanations,” in 2021 IEEE 37th International Conference on Data Engineering Workshops (ICDEW), pp. 13–19, IEEE, 2021.
  20. V. Kamma, D. T. Santosh, and S. Gutta, “Why this recommendation?: Explainable product recommendations with ontological knowledge reasoning,” in Recommender Systems, pp. 71–96, CRC Press, 2021.
  21. N. L. Le, M.-H. Abel, and P. Gouspillou, “Towards an ontology-based recommender system for the vehicle sales area,” in Progresses in Artificial Intelligence & Robotics: Algorithms & Applications: Proceedings of 3rd International Conference on Deep Learning, Artificial Intelligence and Robotics,(ICDLAIR) 2021, pp. 126–136, Springer, 2022.
  22. E. P. B. Simperl and C. Tempich, “Ontology engineering: A reality check,” in On the Move to Meaningful Internet Systems 2006: CoopIS, DOA, GADA, and ODBASE: OTM Confederated International Conferences, CoopIS, DOA, GADA, and ODBASE 2006, Montpellier, France, October 29-November 3, 2006. Proceedings, Part I, pp. 836–854, Springer, 2006.
  23. L. N. Luyen, A. Tireau, A. Venkatesan, P. Neveu, and P. Larmande, “Development of a knowledge system for big data: Case study to plant phenotyping data,” in Proceedings of the 6th International Conference on Web Intelligence, Mining and Semantics, pp. 1–9, 2016.
  24. I. Tiddi and S. Schlobach, “Knowledge graphs as tools for explainable machine learning: A survey,” Artificial Intelligence, vol. 302, p. 103627, 2022.
  25. G. Peake and J. Wang, “Explanation mining: Post hoc interpretability of latent factor models for recommendation systems,” in Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2060–2069, 2018.
  26. X. Wang, Q. Li, D. Yu, and G. Xu, “Reinforced path reasoning for counterfactual explainable recommendation,” arXiv preprint arXiv:2207.06674, 2022.
  27. M. T. Ribeiro, S. Singh, and C. Guestrin, “” why should i trust you?” explaining the predictions of any classifier,” in Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp. 1135–1144, 2016.
  28. Z. C. Lipton, “The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery.,” Queue, vol. 16, no. 3, pp. 31–57, 2018.
  29. A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko, “Translating embeddings for modeling multi-relational data,” Advances in neural information processing systems, vol. 26, 2013.
  30. Z. Wang, J. Zhang, J. Feng, and Z. Chen, “Knowledge graph embedding by translating on hyperplanes,” in Proceedings of the AAAI conference on artificial intelligence, vol. 28, 2014.
  31. A. Grover and J. Leskovec, “node2vec: Scalable feature learning for networks,” in Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, 2016.
  32. T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed representations of words and phrases and their compositionality,” Advances in neural information processing systems, 2013.
  33. C. J. Burges, “From ranknet to lambdarank to lambdamart: An overview,” Learning, vol. 11, no. 23-581, p. 81, 2010.
  34. N. L. Le, M.-H. Abel, and P. Gouspillou, “Improving semantic similarity measure within a recommender system based-on rdf graphs,” in Proceedings of the 6th International Conference on Information Technology & Systems, 2023.
  35. N. L. Le, M.-H. Abel, and P. Gouspillou, “Apport des ontologies pour le calcul de la similarité sémantique au sein d’un système de recommandation,” in Ingénierie des Connaissances (Evènement affilié à PFIA’22 Plate-Forme Intelligence Artificielle), (Saint-Étienne, France), June 2022.
  36. Z. Gantner, S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme, “MyMediaLite: A free recommender system library,” in 5th ACM International Conference on Recommender Systems (RecSys 2011), 2011.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ngoc Luyen Le (15 papers)
  2. Marie-Hélène Abel (15 papers)
  3. Philippe Gouspillou (8 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets