Efficient Bitrate Ladder Construction using Transfer Learning and Spatio-Temporal Features (2401.03195v2)
Abstract: Providing high-quality video with efficient bitrate is a main challenge in video industry. The traditional one-size-fits-all scheme for bitrate ladders is inefficient and reaching the best content-aware decision computationally impractical due to extensive encodings required. To mitigate this, we propose a bitrate and complexity efficient bitrate ladder prediction method using transfer learning and spatio-temporal features. We propose: (1) using feature maps from well-known pre-trained DNNs to predict rate-quality behavior with limited training data; and (2) improving highest quality rung efficiency by predicting minimum bitrate for top quality and using it for the top rung. The method tested on 102 video scenes demonstrates 94.1% reduction in complexity versus brute-force at 1.71% BD-Rate expense. Additionally, transfer learning was thoroughly studied through four networks and ablation studies.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.