Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 192 tok/s Pro
2000 character limit reached

Efficient Bitrate Ladder Construction using Transfer Learning and Spatio-Temporal Features (2401.03195v2)

Published 6 Jan 2024 in cs.MM, cs.CV, and cs.LG

Abstract: Providing high-quality video with efficient bitrate is a main challenge in video industry. The traditional one-size-fits-all scheme for bitrate ladders is inefficient and reaching the best content-aware decision computationally impractical due to extensive encodings required. To mitigate this, we propose a bitrate and complexity efficient bitrate ladder prediction method using transfer learning and spatio-temporal features. We propose: (1) using feature maps from well-known pre-trained DNNs to predict rate-quality behavior with limited training data; and (2) improving highest quality rung efficiency by predicting minimum bitrate for top quality and using it for the top rung. The method tested on 102 video scenes demonstrates 94.1% reduction in complexity versus brute-force at 1.71% BD-Rate expense. Additionally, transfer learning was thoroughly studied through four networks and ablation studies.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets