Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Clustering Coefficients in Complex Networks (2401.02999v1)

Published 4 Jan 2024 in physics.soc-ph, cs.NI, and cs.SI

Abstract: The clustering coefficient is a valuable tool for understanding the structure of complex networks. It is widely used to analyze social networks, biological networks, and other complex systems. While there is generally a single common definition for the local clustering coefficient, there are two different ways to calculate the global clustering coefficient. The first approach takes the average of the local clustering coefficients for each node in the network. The second one is based on the ratio of closed triplets to all triplets. It is shown that these two definitions of the global clustering coefficients are strongly inequivalent and may significantly impact the accuracy of the outcome.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. Duncan J. Watts, Small Worlds: The Dynamics of Networks between Order and Randomness (Princeton University Press, Princeton, 1999).
  2. Guido Caldarelli, Scale-Free Networks: Complex Webs in Nature, and Technology (Oxford University Press, Oxford, 2007).
  3. Albert-László Barabási, “Scale-free networks: A decade and beyond,” Science 325, 412–413 (2009).
  4. Albert-Laszlo Barabási, Network Science (Cambridge University Press, Cambridge, 2016).
  5. Réka Albert and Albert-László Barabási, “Statistical mechanics of complex networks,” Rev. Mod. Phys. 74, 47–97 (2002).
  6. Jarosław Kwapień and Stanislaw Drozdz, “Physical approach to complex systems,” Physics Reports 515, 115 – 226 (2012).
  7. Mark Newman, Networks (Oxford University Press, Oxford, 2018).
  8. M. Girvan and M. E. J. Newman, “Community structure in social and biological networks,” Proceedings of the National Academy of Sciences 99, 7821–7826 (2002).
  9. Ivan Voitalov, Pim van der Hoorn, Remco van der Hofstad,  and Dmitri Krioukov, “Scale-free networks well done,” Phys. Rev. Research 1, 033034 (2019).
  10. Duncan J. Watts and Steven H. Strogatz, “Collective dynamics of ‘small-world’networks,” Nature 393, 440 – 442 (1998).
  11. Ginestra Bianconi, “Entropy of network ensembles,” Phys. Rev. E 79, 036114 (2009).
  12. Claudio Castellano, Santo Fortunato,  and Vittorio Loreto, “Statistical physics of social dynamics,” Rev. Mod. Phys. 81, 591–646 (2009).
  13. Albert-László Barabási, Natali Gulbahce,  and Joseph Loscalzo, “Network medicine: a network-based approach to human disease,” Nature Reviews Genetics 12, 56–68 (2011).
  14. Steven H. Strogatz, “Exploring complex networks,” Nature 410, 268–276 (2001).
  15. M. E. J. Newman, “The structure and function of complex networks,” SIAM Review 45, 167–256 (2003).
  16. Duncan J. Watts, Peter Sheridan Dodds,  and M. E. J. Newman, “Identity and search in social networks,” Science 296, 1302–1305 (2002).
  17. M. E. J. Newman, “Clustering and preferential attachment in growing networks,” Phys. Rev. E 64, 025102 (2001).
  18. Santo Fortunato, “Community detection in graphs,” Physics Reports 486, 75–174 (2010).
  19. Omar F. Robledo, Xiu-Xiu Zhan, Alan Hanjalic,  and Huijuan Wang, “Influence of clustering coefficient on network embedding in link prediction,” Applied Network Science 7, 35 (2022).
  20. M. E. J. Newman, S. H. Strogatz,  and D. J. Watts, “Random graphs with arbitrary degree distributions and their applications,” Phys. Rev. E 64, 026118 (2001).
  21. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez,  and D.-U. Hwang, “Complex networks: Structure and dynamics,” Physics Reports 424, 175 – 308 (2006).
  22. A. Barrat and M. Weigt, “On the properties of small-world network models,” The European Physical Journal B - Condensed Matter and Complex Systems 13, 547–560 (2000).
  23. Juyong Park and M. E. J. Newman, “Statistical mechanics of networks,” Phys. Rev. E 70, 066117 (2004).
  24. Béla Bollobás and Oliver M. Riordan, “Mathematical results on scale-free random graphs,” in Handbook of graphs and networks: from the genome to the Internet, edited by Stefan Bornholdt and Heinz Georg Schuster (Wiley-VCH, Weinheim, 2003).
  25. Yu Wang, Eshwar Ghumare, Rik Vandenberghe,  and Patrick Dupont, “Comparison of Different Generalizations of Clustering Coefficient and Local Efficiency for Weighted Undirected Graphs,” Neural Computation 29, 313–331 (2017).
  26. Alexander Nesterov and Pablo Héctor Mata Villafuerte, “Critical phenomena in complex networks: from scale-free to random networks,” The European Physical Journal B 96, 143 (2023).
  27. Marián Boguñá and Romualdo Pastor-Satorras, “Class of correlated random networks with hidden variables,” Phys. Rev. E 68, 036112 (2003).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com