Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Higher-order clustering in networks (1704.03913v2)

Published 12 Apr 2017 in cs.SI, cond-mat.stat-mech, physics.soc-ph, and stat.ML

Abstract: A fundamental property of complex networks is the tendency for edges to cluster. The extent of the clustering is typically quantified by the clustering coefficient, which is the probability that a length-2 path is closed, i.e., induces a triangle in the network. However, higher-order cliques beyond triangles are crucial to understanding complex networks, and the clustering behavior with respect to such higher-order network structures is not well understood. Here we introduce higher-order clustering coefficients that measure the closure probability of higher-order network cliques and provide a more comprehensive view of how the edges of complex networks cluster. Our higher-order clustering coefficients are a natural generalization of the traditional clustering coefficient. We derive several properties about higher-order clustering coefficients and analyze them under common random graph models. Finally, we use higher-order clustering coefficients to gain new insights into the structure of real-world networks from several domains.

Citations (98)

Summary

We haven't generated a summary for this paper yet.