Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved bounds for the bracketing number of orthants or revisiting an algorithm of Thiémard to compute bounds for the star discrepancy (2401.00801v2)

Published 1 Jan 2024 in math.CO, cs.CG, and cs.DM

Abstract: We improve the best known upper bound for the bracketing number of $d$-dimensional axis-parallel boxes anchored in $0$ (or, put differently, of lower left orthants intersected with the $d$-dimensional unit cube $[0,1]d$). More precisely, we provide a better upper bound for the cardinality of an algorithmic bracketing cover construction due to Eric Thi\'emard, which forms the core of his algorithm to approximate the star discrepancy of arbitrary point sets from [E. Thi\'emard, An algorithm to compute bounds for the star discrepancy, J.~Complexity 17 (2001), 850 -- 880]. Moreover, the new upper bound for the bracketing number of anchored axis-parallel boxes yields an improved upper bound for the bracketing number of arbitrary axis-parallel boxes in $[0,1]d$. In our upper bounds all constants are fully explicit.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. C. Aistleitner and M. T. Hofer. Probabilistic discrepancy bound for Monte Carlo point sets. Math. Comp., 83:1373 – 1381, 2014.
  2. C. Aistleitner and M. Weimar. Probabilistic star discrepancy bounds for double infinite random matrices. In J. Dick, F. Y. Kuo, G. Peters, and I. H. Sloan, editors, Monte Carlo and Quasi-Monte Carlo Methods 2012, pages 271 – 287, Berlin, Heidelberg, 2013. Springer.
  3. L. Devroye and G. Lugosi. Combinatorial Methods in Density Estimation. Springer Series in Statistics. Springer-Verlag, New York, 2001.
  4. J. Dick and D. Rudolf. Discrepancy estimates for variance bounding Markov chain quasi-Monte Carlo. Electron. J. Probab., 19:1–24, 2014.
  5. Discrepancy bounds for uniformly ergodic Markov chain quasi-Monte Carlo. Ann. Appl. Probab., 26:3178–3205, 2016.
  6. Calculation of discrepancy measures and applications. In W. W. Chen, A. Srivastav, and G. Travaglini, editors, Panorama of Discrepancy Theory, Lecture Notes in Mathematics 2107, pages 621–678. Springer, 2014.
  7. R. M. Dudley. Central limit theorems for empirical measures. Ann. Prob., 6:899–929, 1978.
  8. New bounds for the extreme and the star discrepancy of couble-infinite matrices, 2023. preprint, arXiv:2305.04686 (to appear in: Monte Carlo and Quasi-Monte Carlo Methods 2022, A. Hinrichs, P. Kritzer, F. Pillichshammer (eds.), Springer).
  9. M. Gnewuch. Bracketing numbers for axis-parallel boxes and applications to geometric discrepancy. J. Complexity, 24:154–172, 2008.
  10. M. Gnewuch. Construction of minimal bracketing covers for rectangles. Electron. J. Combin., 15, 2008. Research Paper 95.
  11. M. Gnewuch. Entropy, randomization, derandomization, and discrepancy. In L. Plaskota and H. Woźniakowski, editors, Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, pages 43–78. Springer, 2012.
  12. M. Gnewuch and N. Hebbinghaus. Discrepancy bounds for a class of negatively dependent random points including Latin hypercube samples. Ann. Appl. Probab., 31:1944–1965, 2021.
  13. A generalized Faulhaber inequality, improved bracketing covers, and applications to discrepancy. Math. Comput., 90:2873–2898, 2021.
  14. D. Haussler. Sphere packing numbers for subsets of the Boolean n𝑛nitalic_n-cube with bounded Vapnik-Chervonenkis dimension. J. Combin. Theory A, 69:217–232, 1995.
  15. Expected dispersion of uniformly distributed points. J. Complexity, 61:101483, 2020.
  16. M. Ledoux and M. Talagrand. Probability in Banach Spaces. Springer-Verlag, Berlin Heidelberg, first reprint edition, 2002.
  17. H. N. Mhaskar. On the tractability of multivariate integration and approximation by neural networks. J. Complexity, 20:561–590, 2004.
  18. Herbert Robbins. A remark on Stirling’s formula. The American Mathematical Monthly, 62:26–29, 1955.
  19. D. Rudolf. An upper bound of the minimal dispersion via delta covers. In J. Dick, F. Y. Kuo, and Woźniakowski, editors, Contemporary Computational Mathematics – A Celebration of the 80th Birthday of Ian Sloan, pages 1099–1108. Springer, 2018.
  20. B. Sen. A Gentle Introduction to Empirical Process Theory and Applications. Lecture Notes, Department of Statistics, Columbia University in the City of New York, 2022.
  21. E. Thiémard. An algorithm to compute bounds for the star discrepancy. J. Complexity, 17:850–880, 2001.
  22. A. W. van der Vaart and J. A. Wellner. Weak Convergence and Empirical Processes. Springer Series in Statistics. Springer, New York, 1996.
  23. R. Vershynin. High-Dimensional Probability – An Introduction with Applications to Data Science. Cambrigde Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2018.
Citations (2)

Summary

We haven't generated a summary for this paper yet.