Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Convergence of the complex block Jacobi methods under the generalized serial pivot strategies (2401.00533v2)

Published 31 Dec 2023 in math.NA and cs.NA

Abstract: The paper considers the convergence of the complex block Jacobi diagonalization methods under the large set of the generalized serial pivot strategies. The global convergence of the block methods for Hermitian, normal and $J$-Hermitian matrices is proven. In order to obtain the convergence results for the block methods that solve other eigenvalue problems, such as the generalized eigenvalue problem, we consider the convergence of a general block iterative process which uses the complex block Jacobi annihilators and operators.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. J. Demmel, K. Veselić: Jacobi’s method is more accurate than QR. SIAM J. Matrix Anal. Appl. 13(4) (1992) 1204–1245.
  2. Dopico F., Koev P.,Molera J. M.: Implicit standard Jacobi gives high relative accuracy. Numer. Math. 113 (2009) 519-553.
  3. Z. Drmač: A global convergence proof of cyclic Jacobi methods with block rotations. SIAM J. Matrix Anal. Appl. 31(3) (2009) 1329–1350.
  4. Z. Drmač, K. Veselić: New fast and accurate Jacobi SVD algorithm I. SIAM J. Matrix Anal. Appl. 29(4) (2008) 1322–1342.
  5. Z. Drmač, K. Veselić: New fast and accurate Jacobi SVD algorithm II. SIAM J. Matrix Anal. Appl. 29(4) (2008) 1343–1362.
  6. L. Elsner, K. D. Ikramov: Normal matrices: an update. Linear Algebra Appl. 285 (1998) 291–303.
  7. G. E. Forsythe, P. Henrici: The cyclic Jacobi method for computing the principal values of a complex matrix. Trans. Amer. Math. Soc. 94 (1960) 1–23.
  8. E. R. Hansen: On cyclic Jacobi methods. SIAM J. Appl. Math. 11 (1963) 449–459.
  9. V. Hari: On the global convergence of Eberlein method for real matrices. Numer. Math. 39 (1982) 361–369.
  10. V. Hari: On the convergence of cyclic Jacobi-like processes. Linear Algebra Appl. 81 (1986) 105–127.
  11. V. Hari: On pairs of almost diagonal matrices. Linear Algebra and Its Appl. 148 (1991) 193–223.
  12. V. Hari: On sharp quadratic convergence bounds for the serial Jacobi methods. Numer. Math. 60 (1991) 375–406.
  13. V. Hari: Convergence of a block-oriented quasi-cyclic Jacobi method. SIAM J. Matrix Anal. Appl. 29(2) (2007) 349–369.
  14. V. Hari: Convergence to diagonal form of block Jacobi-type methods. Numer. Math. 129(3) (2015) 449–481.
  15. V. Hari: On the global convergence of the complex HZ method. SIAM J. Matrix Anal. Appl. 40(4) (2019) 1291–1310.
  16. V. Hari: On the global convergence of the block Jacobi method for the positive definite generalized eigenvalue problem. Calcolo 58:24 (2021)
  17. V. Hari: On the quadratic convergence of the complex HZ method for the positive definite generalized eigenvalue problem. Linear Algebra Appl. 632(1) (2022) 153–192.
  18. V. Hari, E. Begović Kovač: Convergence of the cyclic and quasi-cyclic block Jacobi methods. Electron. Trans. Numer. Anal. 46 (2017) 107–147.
  19. V. Hari, E. Begović Kovač: On the convergence of complex Jacobi methods. Linear Multilinear Algebra 69(3) (2021) 489–514.
  20. P. Henrici, K. Zimmermann: An estimate for the norms of certain cyclic Jacobi operators. Linear Algebra Appl. 1(4) (1968) 489–501.
  21. F. T. Luk, H. Park: A proof of convergence for two parallel Jacobi SVD algorithms. IEEE Transactions on Computers 38(6) (1989) 806-811.
  22. J. Matejaš: Accuracy of the Jacobi method on scaled diagonally dominant symmetric matrices. SIAM J. Matrix Anal. Appl. 31(1) (2009) 133–153.
  23. W. F. Mascarenhas: On the convergence of the Jacobi methods for arbitrary orderings. SIAM J. Mat. Anal. Appl. 16(4) (1995) 1197–1209.
  24. L. Nazareth: On the convergence of the cyclic Jacobi methods. Linear Algebra Appl. 12(2) (1975) 151–164.
  25. H. N. Rhee, V. Hari: On the global and cubic convergence of a quasy-cyclic Jacobi method. Numer. Math. 66 (1993) 97–122
  26. A. H. Sameh: On Jacobi and Jacobi-like algorithms for parallel computer. Math. Comp. 25 (1971) 579–590.
  27. I. Slapničar: Highly accurate symmetric eigenvalue decomposition and hyperbolic SVD. Linear Algebra Appl. 358 (2003) 387–424.
  28. I. Slapničar, N. Truhar: Relative perturbation theory for hyperbolic singular value problem. Linear Algebra Appl. 358 (2003) 367–386.
  29. K. Veselić: A Jacobi eigenreduction algorithm for definite matrix pairs. Numer. Math. 64(1) (1993) 241–269.
  30. K. Veselić: Perturbation theory for the eigenvalues of factorised symmetric matrices. Linear Algebra Appl. 309 (2000) 85–102.
  31. J. H. Wilkinson: Note on the quadratic convergence of the cyclic Jacobi process. Numer. Math. 4 (1962) 296–300.
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.