Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-temporal Sentinel-1 and -2 Data Fusion for Optical Image Simulation (1807.09954v1)

Published 26 Jul 2018 in cs.CV

Abstract: In this paper, we present the optical image simulation from a synthetic aperture radar (SAR) data using deep learning based methods. Two models, i.e., optical image simulation directly from the SAR data and from multi-temporal SARoptical data, are proposed to testify the possibilities. The deep learning based methods that we chose to achieve the models are a convolutional neural network (CNN) with a residual architecture and a conditional generative adversarial network (cGAN). We validate our models using the Sentinel-1 and -2 datasets. The experiments demonstrate that the model with multi-temporal SAR-optical data can successfully simulate the optical image, meanwhile, the model with simple SAR data as input failed. The optical image simulation results indicate the possibility of SARoptical information blending for the subsequent applications such as large-scale cloud removal, and optical data temporal superresolution. We also investigate the sensitivity of the proposed models against the training samples, and reveal possible future directions.

Citations (91)

Summary

We haven't generated a summary for this paper yet.