Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Analysis of biologically plausible neuron models for regression with spiking neural networks (2401.00369v1)

Published 31 Dec 2023 in math.NA and cs.NA

Abstract: This paper explores the impact of biologically plausible neuron models on the performance of Spiking Neural Networks (SNNs) for regression tasks. While SNNs are widely recognized for classification tasks, their application to Scientific Machine Learning and regression remains underexplored. We focus on the membrane component of SNNs, comparing four neuron models: Leaky Integrate-and-Fire, FitzHugh-Nagumo, Izhikevich, and Hodgkin-Huxley. We investigate their effect on SNN accuracy and efficiency for function regression tasks, by using Euler and Runge-Kutta 4th-order approximation schemes. We show how more biologically plausible neuron models improve the accuracy of SNNs while reducing the number of spikes in the system. The latter represents an energetic gain on actual neuromorphic chips since it directly reflects the amount of energy required for the computations.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.