Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 96 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Kimi K2 189 tok/s Pro
2000 character limit reached

Explanation of the 95 GeV $γγ$ and $b\bar{b}$ excesses in the Minimal Left-Right Symmetric Model (2312.17733v2)

Published 29 Dec 2023 in hep-ph and hep-ex

Abstract: We propose a simple interpretation of the $\gamma\gamma$ excesses reported by both CMS and ATLAS groups at 95 GeV together with the LEP excess in the $Zb\bar{b}$ channel around the same mass in terms of a neutral scalar field in the minimal left-right symmetric model (LRSM). We point out that the scalar field which implements the seesaw mechanism for neutrino masses has all the right properties to explain these observations, without introducing any extra scalar fields. The key point is that this scalar particle is hardly constrained because it couples only to heavy right-handed particles. As a result, the diphoton decay mode receives contributions from both mixing with the Standard Model (SM) Higgs and the heavy charged bosons in the LRSM, depending on the $SU(2)R\times U(1){B-L}$ symmetry breaking scale $v_R$. The complete allowed parameter space for explaining the 95 GeV excesses in this model can be probed with the high-precision measurements of the SM Higgs mixing with other scalars at the high-luminosity LHC and future Higgs factories.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (91)
  1. ATLAS Collaboration, G. Aad et al., “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC,” Phys. Lett. B 716 (2012) 1–29, [1207.7214].
  2. CMS Collaboration, S. Chatrchyan et al., “Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC,” Phys. Lett. B 716 (2012) 30–61, [1207.7235].
  3. S. Dawson et al., “Report of the Topical Group on Higgs Physics for Snowmass 2021: The Case for Precision Higgs Physics,” in Snowmass 2021. 9, 2022. [2209.07510].
  4. CMS Collaboration, “Search for a standard model-like Higgs boson in the mass range between 70 and 110GeVGeV~{}\mathrm{GeV}roman_GeV in the diphoton final state in proton-proton collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13~{}\mathrm{TeV}square-root start_ARG italic_s end_ARG = 13 roman_TeV,”. CMS-PAS-HIG-20-002.
  5. ATLAS Collaboration, “Search for diphoton resonances in the 66 to 110 GeV mass range using 140 fb−11{}^{-1}start_FLOATSUPERSCRIPT - 1 end_FLOATSUPERSCRIPT of 13 TeV p⁢p𝑝𝑝ppitalic_p italic_p collisions collected with the ATLAS detector,”. ATLAS-CONF-2023-035.
  6. CMS Collaboration, A. Tumasyan et al., “Searches for additional Higgs bosons and for vector leptoquarks in τ⁢τ𝜏𝜏\tau\tauitalic_τ italic_τ final states in proton-proton collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV,” JHEP 07 (2023) 073, [2208.02717].
  7. LEP Working Group for Higgs boson searches, ALEPH, DELPHI, L3, OPAL Collaboration, R. Barate et al., “Search for the standard model Higgs boson at LEP,” Phys. Lett. B 565 (2003) 61–75, [hep-ex/0306033].
  8. J. Cao, X. Guo, Y. He, P. Wu, and Y. Zhang, “Diphoton signal of the light Higgs boson in natural NMSSM,” Phys. Rev. D 95 no. 11, (2017) 116001, [1612.08522].
  9. P. J. Fox and N. Weiner, “Light Signals from a Lighter Higgs,” JHEP 08 (2018) 025, [1710.07649].
  10. U. Haisch and A. Malinauskas, “Let there be light from a second light Higgs doublet,” JHEP 03 (2018) 135, [1712.06599].
  11. T. Biekötter, S. Heinemeyer, and C. Muñoz, “Precise prediction for the Higgs-boson masses in the μ⁢ν𝜇𝜈\mu\nuitalic_μ italic_ν SSM,” Eur. Phys. J. C 78 no. 6, (2018) 504, [1712.07475].
  12. D. Liu, J. Liu, C. E. M. Wagner, and X.-P. Wang, “A Light Higgs at the LHC and the B-Anomalies,” JHEP 06 (2018) 150, [1805.01476].
  13. T. Biekötter, M. Chakraborti, and S. Heinemeyer, “A 96 GeV Higgs boson in the N2HDM,” Eur. Phys. J. C 80 no. 1, (2020) 2, [1903.11661].
  14. J. M. Cline and T. Toma, “Pseudo-Goldstone dark matter confronts cosmic ray and collider anomalies,” Phys. Rev. D 100 no. 3, (2019) 035023, [1906.02175].
  15. K. Choi, S. H. Im, K. S. Jeong, and C. B. Park, “Light Higgs bosons in the general NMSSM,” Eur. Phys. J. C 79 no. 11, (2019) 956, [1906.03389].
  16. A. Kundu, S. Maharana, and P. Mondal, “A 96 GeV scalar tagged to dark matter models,” Nucl. Phys. B 955 (2020) 115057, [1907.12808].
  17. D. Sachdeva and S. Sadhukhan, “Discussing 125 GeV and 95 GeV excess in light radion model,” Phys. Rev. D 101 no. 5, (2020) 055045, [1908.01668].
  18. J. Cao, X. Jia, Y. Yue, H. Zhou, and P. Zhu, “96 GeV diphoton excess in seesaw extensions of the natural NMSSM,” Phys. Rev. D 101 no. 5, (2020) 055008, [1908.07206].
  19. J. A. Aguilar-Saavedra and F. R. Joaquim, “Multiphoton signals of a (96 GeV?) stealth boson,” Eur. Phys. J. C 80 no. 5, (2020) 403, [2002.07697].
  20. A. A. Abdelalim, B. Das, S. Khalil, and S. Moretti, “Di-photon decay of a light Higgs state in the BLSSM,” Nucl. Phys. B 985 (2022) 116013, [2012.04952].
  21. T. Biekötter, A. Grohsjean, S. Heinemeyer, C. Schwanenberger, and G. Weiglein, “Possible indications for new Higgs bosons in the reach of the LHC: N2HDM and NMSSM interpretations,” Eur. Phys. J. C 82 no. 2, (2022) 178, [2109.01128].
  22. S. Heinemeyer, C. Li, F. Lika, G. Moortgat-Pick, and S. Paasch, “Phenomenology of a 96 GeV Higgs boson in the 2HDM with an additional singlet,” Phys. Rev. D 106 no. 7, (2022) 075003, [2112.11958].
  23. T. Biekötter, S. Heinemeyer, and G. Weiglein, “Mounting evidence for a 95 GeV Higgs boson,” JHEP 08 (2022) 201, [2203.13180].
  24. R. Benbrik, M. Boukidi, S. Moretti, and S. Semlali, “Explaining the 96 GeV Di-photon anomaly in a generic 2HDM Type-III,” Phys. Lett. B 832 (2022) 137245, [2204.07470].
  25. S. Iguro, T. Kitahara, and Y. Omura, “Scrutinizing the 95–100 GeV di-tau excess in the top associated process,” Eur. Phys. J. C 82 no. 11, (2022) 1053, [2205.03187].
  26. W. Li, H. Qiao, and J. Zhu, “Light Higgs boson in the NMSSM confronted with the CMS di-photon and di-tau excesses*,” Chin. Phys. C 47 no. 12, (2023) 123102, [2212.11739].
  27. S. Banik, A. Crivellin, S. Iguro, and T. Kitahara, “Asymmetric di-Higgs signals of the next-to-minimal 2HDM with a U(1) symmetry,” Phys. Rev. D 108 no. 7, (2023) 075011, [2303.11351].
  28. T. Biekötter, S. Heinemeyer, and G. Weiglein, “The CMS di-photon excess at 95 GeV in view of the LHC Run 2 results,” Phys. Lett. B 846 (2023) 138217, [2303.12018].
  29. C. Bonilla, A. E. Carcamo Hernandez, S. Kovalenko, H. Lee, R. Pasechnik, and I. Schmidt, “Fermion mass hierarchy in an extended left-right symmetric model,” [2305.11967].
  30. D. Azevedo, T. Biekötter, and P. M. Ferreira, “2HDM interpretations of the CMS diphoton excess at 95 GeV,” JHEP 11 (2023) 017, [2305.19716].
  31. P. Escribano, V. M. Lozano, and A. Vicente, “Scotogenic explanation for the 95 GeV excesses,” Phys. Rev. D 108 no. 11, (2023) 115001, [2306.03735].
  32. T. Biekötter, S. Heinemeyer, and G. Weiglein, “The 95.4 GeV di-photon excess at ATLAS and CMS,” [2306.03889].
  33. A. Belyaev, R. Benbrik, M. Boukidi, M. Chakraborti, S. Moretti, and S. Semlali, “Explanation of the Hints for a 95 GeV Higgs Boson within a 2-Higgs Doublet Model,” [2306.09029].
  34. S. Ashanujjaman, S. Banik, G. Coloretti, A. Crivellin, B. Mellado, and A.-T. Mulaudzi, “S⁢U⁢(2)L𝑆𝑈subscript2𝐿SU(2)_{L}italic_S italic_U ( 2 ) start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT triplet scalar as the origin of the 95 GeV excess?,” [2306.15722].
  35. S. Bhattacharya, G. Coloretti, A. Crivellin, S.-E. Dahbi, Y. Fang, M. Kumar, and B. Mellado, “Growing Excesses of New Scalars at the Electroweak Scale,” [2306.17209].
  36. J. A. Aguilar-Saavedra, H. B. Câmara, F. R. Joaquim, and J. F. Seabra, “Confronting the 95 GeV excesses within the U(1)’-extended next-to-minimal 2HDM,” Phys. Rev. D 108 no. 7, (2023) 075020, [2307.03768].
  37. J. Dutta, J. Lahiri, C. Li, G. Moortgat-Pick, S. F. Tabira, and J. A. Ziegler, “Dark Matter Phenomenology in 2HDMS in light of the 95 GeV excess,” [2308.05653].
  38. U. Ellwanger and C. Hugonie, “Additional Higgs Bosons near 95 and 650 GeV in the NMSSM,” [2309.07838].
  39. J. Cao, X. Jia, J. Lian, and L. Meng, “95 GeV Diphoton and b⁢b¯𝑏¯𝑏b\bar{b}italic_b over¯ start_ARG italic_b end_ARG Excesses in the General Next-to-Minimal Supersymmetric Standard Model,” [2310.08436].
  40. D. Borah, S. Mahapatra, P. K. Paul, and N. Sahu, “Scotogenic U⁢(1)Lμ−Lτ𝑈subscript1subscript𝐿𝜇subscript𝐿𝜏U(1)_{L_{\mu}-L_{\tau}}italic_U ( 1 ) start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT - italic_L start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT end_POSTSUBSCRIPT origin of (g−2)μsubscript𝑔2𝜇(g-2)_{\mu}( italic_g - 2 ) start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT, W-mass anomaly and 95 GeV excess,” [2310.11953].
  41. G. Arcadi, G. Busoni, D. Cabo-Almeida, and N. Krishnan, “Is there a (Pseudo)Scalar at 95 GeV?,” [2311.14486].
  42. A.-T. Mulaudzi, M. Kumar, A. Goyal, and B. Mellado, “Constraining 2HDM+S model through W-boson mass measurements,” 12, 2023. [2312.08807].
  43. A. Ahriche, “The 95 GeV Excess in the Georgi-Machacek Model: Single or Twin Peak Resonance,” [2312.10484].
  44. T.-K. Chen, C.-W. Chiang, S. Heinemeyer, and G. Weiglein, “A 95 GeV Higgs Boson in the Georgi-Machacek Model,” [2312.13239].
  45. O. Fischer et al., “Unveiling hidden physics at the LHC,” Eur. Phys. J. C 82 no. 8, (2022) 665, [2109.06065].
  46. A. Crivellin and B. Mellado, “Anomalies in Particle Physics,” [2309.03870].
  47. J. C. Pati and A. Salam, “Lepton Number as the Fourth Color,” Phys. Rev. D 10 (1974) 275–289. [Erratum: Phys.Rev.D 11, 703–703 (1975)].
  48. R. N. Mohapatra and J. C. Pati, “A Natural Left-Right Symmetry,” Phys. Rev. D 11 (1975) 2558.
  49. G. Senjanovic and R. N. Mohapatra, “Exact Left-Right Symmetry and Spontaneous Violation of Parity,” Phys. Rev. D 12 (1975) 1502.
  50. P. Minkowski, “μ→e⁢γ→𝜇𝑒𝛾\mu\to e\gammaitalic_μ → italic_e italic_γ at a Rate of One Out of 109superscript10910^{9}10 start_POSTSUPERSCRIPT 9 end_POSTSUPERSCRIPT Muon Decays?,” Phys. Lett. B 67 (1977) 421–428.
  51. R. N. Mohapatra and G. Senjanovic, “Neutrino Mass and Spontaneous Parity Nonconservation,” Phys. Rev. Lett. 44 (1980) 912.
  52. T. Yanagida, “Horizontal gauge symmetry and masses of neutrinos,” Conf. Proc. C 7902131 (1979) 95–99.
  53. M. Gell-Mann, P. Ramond, and R. Slansky, “Complex Spinors and Unified Theories,” Conf. Proc. C 790927 (1979) 315–321, [1306.4669].
  54. S. L. Glashow, “The Future of Elementary Particle Physics,” NATO Sci. Ser. B 61 (1980) 687.
  55. R. N. Mohapatra and G. Senjanovic, “Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation,” Phys. Rev. D 23 (1981) 165.
  56. M. Fukugita and T. Yanagida, “Baryogenesis Without Grand Unification,” Phys. Lett. B 174 (1986) 45–47.
  57. J.-M. Frere, T. Hambye, and G. Vertongen, “Is leptogenesis falsifiable at LHC?,” JHEP 01 (2009) 051, [0806.0841].
  58. P. S. B. Dev, C.-H. Lee, and R. N. Mohapatra, “Leptogenesis Constraints on the Mass of Right-handed Gauge Bosons,” Phys. Rev. D 90 no. 9, (2014) 095012, [1408.2820].
  59. P. S. B. Dev, C.-H. Lee, and R. N. Mohapatra, “TeV Scale Lepton Number Violation and Baryogenesis,” J. Phys. Conf. Ser. 631 no. 1, (2015) 012007, [1503.04970].
  60. M. Dhuria, C. Hati, R. Rangarajan, and U. Sarkar, “Falsifying leptogenesis for a TeV scale WR±subscriptsuperscript𝑊plus-or-minus𝑅W^{\pm}_{R}italic_W start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT at the LHC,” Phys. Rev. D 92 no. 3, (2015) 031701, [1503.07198].
  61. P. S. B. Dev, R. N. Mohapatra, and Y. Zhang, “CP Violating Effects in Heavy Neutrino Oscillations: Implications for Colliders and Leptogenesis,” JHEP 11 (2019) 137, [1904.04787].
  62. M. Nemevsek, G. Senjanovic, and Y. Zhang, “Warm Dark Matter in Low Scale Left-Right Theory,” JCAP 07 (2012) 006, [1205.0844].
  63. M. Nemevšek and Y. Zhang, “Anatomy of Diluted Dark Matter in the Minimal Left-Right Symmetric Model,” [2312.00129].
  64. D. Chang, R. N. Mohapatra, J. Gipson, R. E. Marshak, and M. K. Parida, “Experimental Tests of New SO(10) Grand Unification,” Phys. Rev. D 31 (1985) 1718.
  65. P. S. B. Dev, R. N. Mohapatra, and Y. Zhang, “Probing the Higgs Sector of the Minimal Left-Right Symmetric Model at Future Hadron Colliders,” JHEP 05 (2016) 174, [1602.05947].
  66. P. S. B. Dev, R. N. Mohapatra, and Y. Zhang, “Displaced photon signal from a possible light scalar in minimal left-right seesaw model,” Phys. Rev. D 95 no. 11, (2017) 115001, [1612.09587].
  67. P. S. B. Dev, R. N. Mohapatra, and Y. Zhang, “Long Lived Light Scalars as Probe of Low Scale Seesaw Models,” Nucl. Phys. B 923 (2017) 179–221, [1703.02471].
  68. D. Chang, R. N. Mohapatra, and M. K. Parida, “Decoupling Parity and SU(2)-R Breaking Scales: A New Approach to Left-Right Symmetric Models,” Phys. Rev. Lett. 52 (1984) 1072.
  69. N. G. Deshpande, J. F. Gunion, B. Kayser, and F. I. Olness, “Left-right symmetric electroweak models with triplet Higgs,” Phys. Rev. D 44 (1991) 837–858.
  70. P. S. B. Dev, R. N. Mohapatra, W. Rodejohann, and X.-J. Xu, “Vacuum structure of the left-right symmetric model,” JHEP 02 (2019) 154, [1811.06869].
  71. A. Maiezza, G. Senjanović, and J. C. Vasquez, “Higgs sector of the minimal left-right symmetric theory,” Phys. Rev. D 95 no. 9, (2017) 095004, [1612.09146].
  72. Y. Zhang, H. An, X. Ji, and R. N. Mohapatra, “General CP Violation in Minimal Left-Right Symmetric Model and Constraints on the Right-Handed Scale,” Nucl. Phys. B 802 (2008) 247–279, [0712.4218].
  73. A. Maiezza, M. Nemevsek, F. Nesti, and G. Senjanovic, “Left-Right Symmetry at LHC,” Phys. Rev. D 82 (2010) 055022, [1005.5160].
  74. A. Maiezza and M. Nemevšek, “Strong P invariance, neutron electric dipole moment, and minimal left-right parity at LHC,” Phys. Rev. D 90 no. 9, (2014) 095002, [1407.3678].
  75. S. Bertolini, A. Maiezza, and F. Nesti, “Kaon CP violation and neutron EDM in the minimal left-right symmetric model,” Phys. Rev. D 101 no. 3, (2020) 035036, [1911.09472].
  76. W. Dekens, L. Andreoli, J. de Vries, E. Mereghetti, and F. Oosterhof, “A low-energy perspective on the minimal left-right symmetric model,” JHEP 11 (2021) 127, [2107.10852].
  77. CMS Collaboration, A. Tumasyan et al., “Search for a right-handed W boson and a heavy neutrino in proton-proton collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV,” JHEP 04 (2022) 047, [2112.03949].
  78. ATLAS Collaboration, G. Aad et al., “Search for heavy Majorana or Dirac neutrinos and right-handed W𝑊Witalic_W gauge bosons in final states with charged leptons and jets in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector,” [2304.09553].
  79. A. Falkowski, C. Gross, and O. Lebedev, “A second Higgs from the Higgs portal,” JHEP 05 (2015) 057, [1502.01361].
  80. T. Robens and T. Stefaniak, “Status of the Higgs Singlet Extension of the Standard Model after LHC Run 1,” Eur. Phys. J. C 75 (2015) 104, [1501.02234].
  81. T. Robens and T. Stefaniak, “LHC Benchmark Scenarios for the Real Higgs Singlet Extension of the Standard Model,” Eur. Phys. J. C 76 no. 5, (2016) 268, [1601.07880].
  82. ATLAS Collaboration, G. Aad et al., “A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery,” Nature 607 no. 7917, (2022) 52–59, [2207.00092]. [Erratum: Nature 612, E24 (2022)].
  83. CMS Collaboration, A. Tumasyan et al., “A portrait of the Higgs boson by the CMS experiment ten years after the discovery.,” Nature 607 no. 7917, (2022) 60–68, [2207.00043].
  84. J. de Blas et al., “Higgs Boson Studies at Future Particle Colliders,” JHEP 01 (2020) 139, [1905.03764].
  85. LHC Higgs Cross Section Working Group Collaboration, D. de Florian et al., “Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector,” [1610.07922].
  86. ILC Collaboration, “The International Linear Collider Technical Design Report - Volume 2: Physics,” [1306.6352].
  87. H. Abramowicz et al., “Higgs physics at the CLIC electron–positron linear collider,” Eur. Phys. J. C 77 no. 7, (2017) 475, [1608.07538].
  88. F. An et al., “Precision Higgs physics at the CEPC,” Chin. Phys. C 43 no. 4, (2019) 043002, [1810.09037].
  89. FCC Collaboration, A. Abada et al., “FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2,” Eur. Phys. J. ST 228 no. 2, (2019) 261–623.
  90. H. Al Ali et al., “The muon Smasher’s guide,” Rept. Prog. Phys. 85 no. 8, (2022) 084201, [2103.14043].
  91. https://porthos.tecnico.ulisboa.pt/CTQFT/files/ThreeBodyPhaseSpace.pdf.
Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube