Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Developing Flying Explorer for Autonomous Digital Modelling in Wild Unknowns (2312.17634v1)

Published 29 Dec 2023 in cs.RO

Abstract: This work presents an innovative solution for robotic odometry, path planning and exploration in wild unknown environments, focusing on digital modelling. The approach uses a minimum cost formulation with pseudo-randomly generated objectives, integrating multi-path planning and evaluation, with emphasis on full coverage of unknown maps based on feasible boundaries of interest. The evaluation carried out on a robotic platform with a lightweight 3D LiDAR sensor model, assesses the consistency and efficiency in exploring completely unknown subterranean-like areas. The algorithm allows for dynamic changes to the desired target and behaviour. At the same time, the paper details the design of AREX, highlighting its robust localisation, mapping and efficient exploration target selection capabilities, with a focus on continuity in exploration direction for increased efficiency and reduced odometry errors. The real-time, high-precision environmental perception module is identified as critical for accurate obstacle avoidance and exploration boundary identification.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. M. Grieves, “Origins of the digital twin concept,” Florida Institute of Technology, vol. 8, 2016.
  2. IBM. (2022) What is a Digital Twin. [Online]. Available: https://www.ibm.com/topics/what-is-a-digital-twin
  3. G. M. Bisanti et al., “Digital twins for aircraft maintenance and operation: A systematic literature review and an iot-enabled modular architecture,” Internet of Things, vol. 24, p. 100991, 2023.
  4. K. Hu, Y. Wei, Y. Pan, H. Kang, and C. Chen, “High-fidelity 3d reconstruction of plants using neural radiance field,” arXiv preprint arXiv:2311.04154, 2023.
  5. H. Kang and C. Chen, “Fast implementation of real-time fruit detection in apple orchards using deep learning,” Computers and Electronics in Agriculture, vol. 168, p. 105108, 2020.
  6. H. Kang, H. Zhou, and C. Chen, “Visual perception and modeling for autonomous apple harvesting,” IEEE Access, vol. 8, pp. 62 151–62 163, 2020.
  7. T. Liu, H. Kang, and C. Chen, “Orb-livox: A real-time dynamic system for fruit detection and localization,” Computers and Electronics in Agriculture, vol. 209, p. 107834, 2023.
  8. Z. Wang, R. Gupta, K. Han, H. Wang, A. Ganlath, N. Ammar, and P. Tiwari, “Mobility digital twin: Concept, architecture, case study, and future challenges,” IEEE Internet Things J., vol. 9, no. 18, p. 17452–17467, 2022. [Online]. Available: http://dx.doi.org/10.1109/JIOT.2022.3156028
  9. H. Kang and X. Wang, “Semantic segmentation of fruits on multi-sensor fused data in natural orchards,” Computers and Electronics in Agriculture, vol. 204, p. 107569, 2023.
  10. C. Papachristos, F. Mascarich, S. Khattak, T. Dang, and K. Alexis, “Localization uncertainty-aware autonomous exploration and mapping with aerial robots using receding horizon path-planning,” Autonomous Robots, vol. 43, pp. 2131–2161, 2019.
  11. S. Molina, G. Cielniak, and T. Duckett, “Robotic exploration for learning human motion patterns,” IEEE Transactions on Robotics, vol. 38, no. 2, pp. 1304–1318, 2021.
  12. Z.-W. Hong, T.-Y. Shann, S.-Y. Su, Y.-H. Chang, T.-J. Fu, and C.-Y. Lee, “Diversity-driven exploration strategy for deep reinforcement learning,” Advances in neural information processing systems, vol. 31, 2018.
  13. S. Shen, N. Michael, and V. Kumar, “Stochastic differential equation-based exploration algorithm for autonomous indoor 3d exploration with a micro-aerial vehicle,” International Journal of Robotics Research, vol. 31, no. 12, pp. 1431 – 1444, October 2012.
  14. M. Naazare, F. G. Rosas, and D. Schulz, “Online next-best-view planner for 3d-exploration and inspection with a mobile manipulator robot,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 3779–3786, 2022.
  15. B. Lindqvist, A.-A. Agha-Mohammadi, and G. Nikolakopoulos, “Exploration-rrt: A multi-objective path planning and exploration framework for unknown and unstructured environments,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2021, pp. 3429–3435.
  16. T. Qin, S. Cao, J. Pan, P. Li, and S. Shen, “Vins-fusion: An optimization-based multi-sensor state estimator,” 2019.
  17. W. Xu and F. Zhang, “Fast-lio: A fast, robust lidar-inertial odometry package by tightly-coupled iterated kalman filter,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 3317–3324, 2021.
  18. X. Zhou, Z. Wang, H. Ye, C. Xu, and F. Gao, “Ego-planner: An esdf-free gradient-based local planner for quadrotors,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 478–485, 2020.
  19. H. Umari and S. Mukhopadhyay, “Autonomous robotic exploration based on multiple rapidly-exploring randomized trees,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2017, pp. 1396–1402.
  20. B. Yamauchi, “A frontier-based approach for autonomous exploration,” in Proceedings 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation CIRA’97.’Towards New Computational Principles for Robotics and Automation’.   IEEE, 1997, pp. 146–151.
  21. G. Amorín, F. Benavides, and E. Grmapin, “A novel stop criterion to support efficient multi-robot mapping,” in 2019 Latin American Robotics Symposium (LARS), 2019 Brazilian Symposium on Robotics (SBR) and 2019 Workshop on Robotics in Education (WRE).   IEEE, 2019, pp. 369–374.
  22. Y. Pan, H. Cao, K. Hu, H. Kang, and X. Wang, “A novel perception and semantic mapping method for robot autonomy in orchards,” arXiv e-prints, pp. arXiv–2308, 2023.
Citations (1)

Summary

We haven't generated a summary for this paper yet.