Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

QGFace: Quality-Guided Joint Training For Mixed-Quality Face Recognition (2312.17494v1)

Published 29 Dec 2023 in cs.CV and cs.MM

Abstract: The quality of a face crop in an image is decided by many factors such as camera resolution, distance, and illumination condition. This makes the discrimination of face images with different qualities a challenging problem in realistic applications. However, most existing approaches are designed specifically for high-quality (HQ) or low-quality (LQ) images, and the performances would degrade for the mixed-quality images. Besides, many methods ask for pre-trained feature extractors or other auxiliary structures to support the training and the evaluation. In this paper, we point out that the key to better understand both the HQ and the LQ images simultaneously is to apply different learning methods according to their qualities. We propose a novel quality-guided joint training approach for mixed-quality face recognition, which could simultaneously learn the images of different qualities with a single encoder. Based on quality partition, classification-based method is employed for HQ data learning. Meanwhile, for the LQ images which lack identity information, we learn them with self-supervised image-image contrastive learning. To effectively catch up the model update and improve the discriminability of contrastive learning in our joint training scenario, we further propose a proxy-updated real-time queue to compose the contrastive pairs with features from the genuine encoder. Experiments on the low-quality datasets SCface and Tinyface, the mixed-quality dataset IJB-B, and five high-quality datasets demonstrate the effectiveness of our proposed approach in recognizing face images of different qualities.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (50)
  1. J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive angular margin loss for deep face recognition,” in IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2019, pp. 4690–4699.
  2. H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, and W. Liu, “Cosface: Large margin cosine loss for deep face recognition,” in IEEE Conference on Computer Vision and Pattern Recognition, CVPR.   IEEE Computer Society, 2018, pp. 5265–5274.
  3. W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song, “Sphereface: Deep hypersphere embedding for face recognition,” in IEEE Conference on Computer Vision and Pattern Recognition, CVPR.   IEEE Computer Society, 2017, pp. 6738–6746.
  4. A. Sepas-Moghaddam, M. A. Haque, P. L. Correia, K. Nasrollahi, T. B. Moeslund, and F. Pereira, “A double-deep spatio-angular learning framework for light field-based face recognition,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 30, no. 12, pp. 4496–4512, 2020.
  5. W. Hu, W. Yan, and H. Hu, “Dual face alignment learning network for nir-vis face recognition,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 32, no. 4, pp. 2411–2424, 2022.
  6. C. B. Kuo, Y.-T. Tsai, H.-H. Shuai, Y.-R. Yeh, and C.-C. Huang, “Towards understanding cross resolution feature matching for surveillance face recognition,” Proceedings of the 30th ACM International Conference on Multimedia, 2022.
  7. J. Chen, J. Chen, Z. Wang, C. Liang, and C.-W. Lin, “Identity-aware face super-resolution for low-resolution face recognition,” IEEE Signal Processing Letters, vol. 27, pp. 645–649, 2020.
  8. S.-C. Lai, C. He, and K.-M. Lam, “Low-resolution face recognition based on identity-preserved face hallucination,” IEEE International Conference on Image Processing (ICIP), pp. 1173–1177, 2019.
  9. J. Zha and H. Chao, “Tcn: Transferable coupled network for cross-resolution face recognition*,” IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3302–3306, 2019.
  10. F. V. Massoli, G. Amato, and F. Falchi, “Cross-resolution learning for face recognition,” Image and Vision Computing, vol. 99, p. 103927, 2020.
  11. S. S. Khalid, M. Awais, Z. Feng, C.-H. Chan, A. Farooq, A. Akbari, and J. Kittler, “Resolution invariant face recognition using a distillation approach,” IEEE Transactions on Biometrics, Behavior, and Identity Science, vol. 2, pp. 410–420, 2020.
  12. M. Grgic, K. Delac, and S. Grgic, “Scface – surveillance cameras face database,” Multimedia Tools and Applications, vol. 51, pp. 863–879, 2011.
  13. H. Fang, W. Deng, Y. Zhong, and J. Hu, “Generate to adapt: Resolution adaption network for surveillance face recognition,” in Proc. of ECCV, 2020.
  14. Y. Huang, P. Shen, Y. Tai, S. Li, X. Liu, J. Li, F. Huang, and R. Ji, “Improving face recognition from hard samples via distribution distillation loss,” in Proc. of ECCV, 2020.
  15. M. Kim, A. K. Jain, and X. Liu, “Adaface: Quality adaptive margin for face recognition,” in IEEE Conference on Computer Vision and Pattern Recognition, CVPR.   IEEE, 2022, pp. 18 729–18 738.
  16. S.-M. Yang, W. Deng, M. Wang, J. Du, and J. Hu, “Orthogonality loss: Learning discriminative representations for face recognition,” IEEE Trans. Circuits Syst. Video Technol., 2021.
  17. K. He, H. Fan, Y. Wu, S. Xie, and R. B. Girshick, “Momentum contrast for unsupervised visual representation learning,” in IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2020, pp. 9726–9735.
  18. Y. Kim, W. Park, and J. Shin, “BroadFace: Looking at tens of thousands of people at once for face recognition,” in Proc. of ECCV, 2020.
  19. Q. Meng, S. Zhao, Z. Huang, and F. Zhou, “Magface: A universal representation for face recognition and quality assessment,” in IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2021, pp. 14 225–14 234.
  20. X. Ling, Y. Lu, W. Xu, W. Deng, Y. Zhang, X. Cui, H. Shi, and D. Wen, “Dive into the resolution augmentations and metrics in low resolution face recognition: A plain yet effective new baseline,” in AAAI workshop.   AAAI Press, 2023.
  21. K. Zhang, Z. Zhang, C.-W. Cheng, W. H. Hsu, Y. Qiao, W. Liu, and T. Zhang, “Super-identity convolutional neural network for face hallucination,” in Proc. of ECCV, 2018.
  22. L. Xu and Z. Gajic, “Improved network for face recognition based on feature super resolution method,” International Journal of Automation and Computing, vol. 18, pp. 915 – 925, 2021.
  23. Z. Cheng, X. Zhu, and S. Gong, “Low-resolution face recognition,” in Asian Conference on Computer Vision, 2018.
  24. X. Shan, Y. Lu, Q. Li, and Y. Wen, “Model-based transfer learning and sparse coding for partial face recognition,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 31, no. 11, pp. 4347–4356, 2021.
  25. M. Jian and K.-M. Lam, “Simultaneous hallucination and recognition of low-resolution faces based on singular value decomposition,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 25, no. 11, pp. 1761–1772, 2015.
  26. A. Bulat, J. Yang, and G. Tzimiropoulos, “To learn image super-resolution, use a gan to learn how to do image degradation first,” in Proc. of ECCV, 2018.
  27. L. Ren, W. Deng, L. Wang, C. Mao, Y. Jiang, H. Jia, and J. Li, “Low-resolution face recognition method combining super-resolution and improved dcr model,” Proceedings of the 2020 9th International Conference on Computing and Pattern Recognition, 2020.
  28. M. M. I. Ullah, A. Hamza, I. A. Taj, and M. Tahir, “Low resolution face recognition using enhanced srgan generated images,” International Conference on Emerging Technologies (ICET), pp. 1–6, 2021.
  29. J. C. Tan, K. M. Lim, and C. P. Lee, “Enhanced alexnet with super-resolution for low-resolution face recognition,” International Conference on Information and Communication Technology (ICoICT), pp. 302–306, 2021.
  30. F. Liu, M. Kim, A. K. Jain, and X. Liu, “Controllable and guided face synthesis for unconstrained face recognition,” in Proc. of ECCV, vol. 13672.   Springer, 2022, pp. 701–719.
  31. C. Low and A. B. J. Teoh, “An implicit identity-extended data augmentation for low-resolution face representation learning,” IEEE Trans. Inf. Forensics Secur., vol. 17, pp. 3062–3076, 2022. [Online]. Available: https://doi.org/10.1109/TIFS.2022.3201374
  32. Y. Song and F. Wang, “Coreface: Sample-guided contrastive regularization for deep face recognition,” CoRR, vol. abs/2304.11668, 2023.
  33. Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman, “Vggface2: A dataset for recognising faces across pose and age,” IEEE International Conference on Automatic Face & Gesture Recognition, FG, pp. 67–74, 2018.
  34. G. B. Huang, M. A. Mattar, T. L. Berg, and E. Learned-Miller, “Labeled faces in the wild: A database for studying face recognition in unconstrained environments,” in Tech. Rep., 2007.
  35. S. Moschoglou, A. Papaioannou, C. Sagonas, J. Deng, I. Kotsia, and S. Zafeiriou, “Agedb: The first manually collected, in-the-wild age database,” in IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2017.
  36. S. Sengupta, J. Chen, C. D. Castillo, V. M. Patel, R. Chellappa, and D. W. Jacobs, “Frontal to profile face verification in the wild,” in WACV, 2016.
  37. T. Zheng and W. Deng, “Cross-pose lfw : A database for studying cross-pose face recognition in unconstrained environments,” in Tech. Rep., 2018.
  38. T. Zheng, W. Deng, and J. Hu, “Cross-age LFW: A database for studying cross-age face recognition in unconstrained environments,” CoRR, 2017.
  39. C. Whitelam, E. Taborsky, A. Blanton, B. Maze, J. C. Adams, T. Miller, N. D. Kalka, A. K. Jain, J. A. Duncan, K. Allen, J. Cheney, and P. Grother, “IARPA janus benchmark-b face dataset,” in IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2017.
  40. X. Wang, S. Zhang, S. Wang, T. Fu, H. Shi, and T. Mei, “Mis-classified vector guided softmax loss for face recognition,” in The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020.   AAAI Press, 2020, pp. 12 241–12 248.
  41. Y. Huang, Y. Wang, Y. Tai, X. Liu, P. Shen, S. Li, J. Li, and F. Huang, “Curricularface: Adaptive curriculum learning loss for deep face recognition,” in IEEE Conference on Computer Vision and Pattern Recognition, CVPR.   IEEE, 2020, pp. 5900–5909.
  42. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in IEEE Conference on Computer Vision and Pattern Recognition, CVPR.   IEEE Computer Society, 2016, pp. 770–778.
  43. A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” in NeurIPS Workshop, 2017.
  44. X. Yin, Y. Tai, Y. Huang, and X. Liu, “Fan: Feature adaptation network for surveillance face recognition and normalization,” in Asian Conference on Computer Vision, 2019.
  45. S.-C. Lai and K.-M. Lam, “Deep siamese network for low-resolution face recognition,” Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), pp. 1444–1449, 2021.
  46. S. S. Khalid, M. Awais, Z. Feng, C.-H. Chan, A. Farooq, A. Akbari, and J. Kittler, “Npt-loss: Demystifying face recognition losses with nearest proxies triplet,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.
  47. I. Kim, S. Han, J. Baek, S. Park, J. Han, and J. Shin, “Quality-agnostic image recognition via invertible decoder,” in IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2021, pp. 12 257–12 266.
  48. Y. Martínez-Díaz, H. M. Vazquez, L. S. Luevano, L. Chang, and M. González-Mendoza, “Lightweight low-resolution face recognition for surveillance applications,” International Conference on Pattern Recognition (ICPR), pp. 5421–5428, 2021.
  49. Y. Shi, X. Yu, K. Sohn, M. Chandraker, and A. K. Jain, “Towards universal representation learning for deep face recognition,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR.   IEEE, 2020, pp. 6816–6825.
  50. C.-Y. Low, A. Teoh, and J. Park, “Mind-net: A deep mutual information distillation network for realistic low-resolution face recognition,” IEEE Signal Processing Letters, vol. 28, pp. 354–358, 2021.

Summary

We haven't generated a summary for this paper yet.